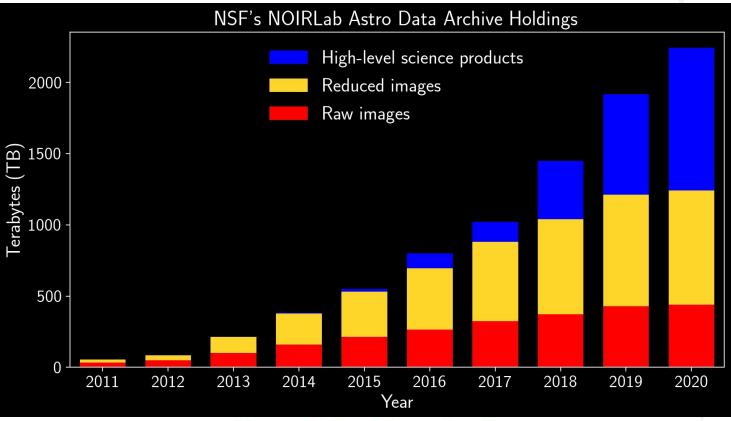
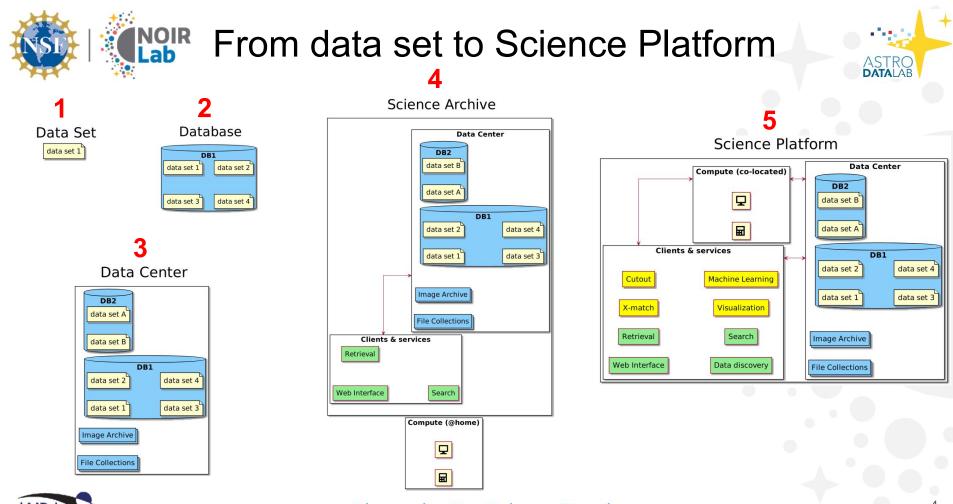

Astro Data Lab An Open-Access and Open-Data Science Platform

Robert Nikutta & Data Lab Team NOIRLab robert.nikutta@noirlab.edu

Webinar @ LIneA, June 10, 2021 Discovering Our Universe Together


Exposure time at 2-4m telescopes in NSF's OIR Lab Science Data Archive

https://youtu.be/lbRWdOqWrEk



Data types at Data Lab

dec dered mag r dered mag g

20.7393

23.0592

23.4134

20.2648

22.0037

19.7413

19.3421

22.8721

22,9804

18.8789

20.5371

19.2442

1263-52708-0002

1263-52708-0010

Currently

Catalogs (2D tables)

Images (2D arrays)

phot = 1.3728

43,780599

43,786786

43.790177

43 791592

43 788338

ls id

1 8797229232750718 286 602226

29232750742

97229232750743

0 8797229232750724 286.604936 43.783519

286.612393

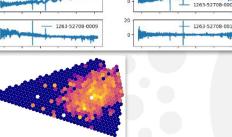
286 612561

229232750733 286.603586

8797229232750735 286.607780

Heterogeneous data collections (file service)

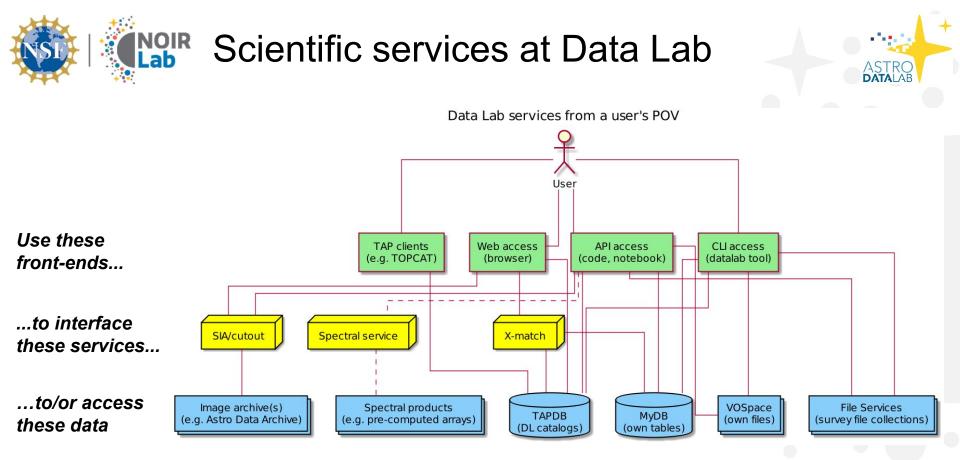
1	print(s	c.ls('gogreen_	dr1://	, to	rmat	='lon	g'))	
drw	- rw	gogreen dr1	0	13	Aug	2020	17:54	CATS
drw	- rw	gogreen dr1	0	13	Aug	2020	17:54	PHOTOMETRY
- rw	- rw	gogreen dr1	5429	13	Aug	2020	17:54	README
drw	- rw	gogreen dr1	0	13	Aug	2020	17:54	SPECTROSCOPY
drw	- rw	gogreen dr1	0	13	Aug	2020	17:54	Scripts


Currently

1D spectra (queryable)

Soon DESI

Future 2D spectra IFU cubes & complex data

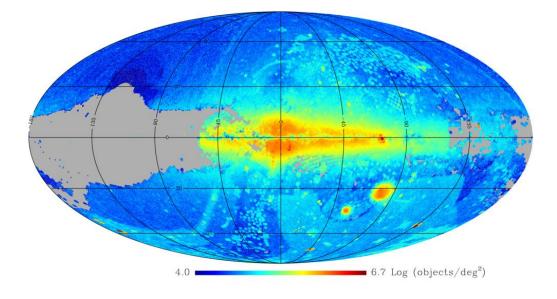


8000 Observed frame wavelength (A)

GMOS-IFU. MaNGA. US-ELTs,

- Enable easy exploration of very large data holdings
 → catalogs, pixels, spectra, survey file collections...
- <u>Connect the various data products</u>, joint analysis \rightarrow e.g. find interesting objects in catalogs, now find good images of them
- Enable remote analysis
 - → Bring your code & algorithms & your data to the Big Data; execute code on our servers; analyze; visualize; publish
- Enable easy user collaboration
 - \rightarrow sharing of query results, data sets, notebooks, group databases & storage

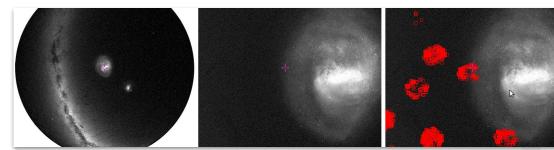
Some large tables at Data Lab


		Large Cata	logs in Astro [Data Lab		
	nsc_dr2.meas					
	phat_v2.phot_meas					
	nsc_dr2.object					
	unwise_dr1.object					
	decaps_dr1.object					
S	gaia_edr3.gaia_source					
set	ls_dr8.tractor					
Datasets	allwise.source					
D	des_dr2.main					
	delve_dr1.objects					
	<pre>smash_dr2.object</pre>					
	phat_v2.phot_v2					
	skymapper_dr1.master					
	sdss_dr16.specobjall					
10	00	10 ³	10 ⁶ nrows		10 ⁹	

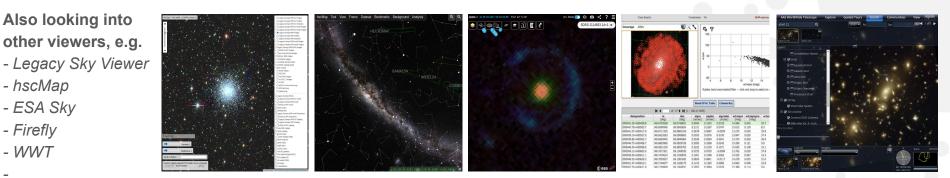
NOIRLab Source Catalog (NSC)

- 35,273 sq deg
- u,g,r,i,z,U,VR bands
- 412,116 exposures
- 3.9 billion objects
- 69 billion measurements
- 100s of epochs in some regions
- 21-23.6 mag median depth
- 0.99-1.35 arcsec median seeing
- Photometric calibration accuracy 1-2%
- Astrometric calibration accuracy 2 mas
- DR3 with PSF photometry mid-2022

Nidever+2021 (AJ)



R (Visual) data exploration



Web survey viewer (based on Aladin Lite)

Survey footprint navigation Pa

Pan & Zoom (here on the LMC) Catalog overlays (here SMASH fields)

R Getting to catalog data (1)

- SQL-like queries via TAP \rightarrow PostgreSQL and ADQL
- Both sync and async queries→ Submit & wait / Submit & check later
- Can query both DL catalog holdings and user's MyDB
- Clients:

TAP-aware (e.g. TOPCAT)

Metadata Find: V Name Descrip Or	01	Table O Co		Keys Hints	10
? ☐ des_dr1.(13) ☐ des_dr1.des_allwise ☐ des_dr1.des_gaia2 ☐ des_dr1.des_galex ☐ des_dr1.des_hsc2 ☐ des_dr1.des_hsc2	+	dow <u>S</u> ubset	l): Table Brow ts <u>H</u> elp	vser † – + X	
- I des dr1.des simbad	Tab	le Browser f	or 1: TAP 3	des_dr1.main	
- 🏢 des dr1.flux 💌		ra	dec	coadd_object_id	
	1	326.95719		214322589	222
Service Capabilities	2	326.95266		214322483	
Query Language: ADQL 👻 Max R	3 4	326.96304		214324090	
ADQL Text	4	326.96187		214324026	1
ADQL Text	5	326.96137	-39.80172	214323947	
Mode: Synchronous 👻					
1		and the data			
select top 5 ra, dec, coadd_object_	10 1	rom des_drl.	lain		
select top 5 ra, dec, coadd_object_	id f	rom des_drl.m	ain		Inf

queryClient.py (notebooks, scripts)

	<pre>query = 'select ra, dec, coadd_object_id from des_dr1.main limit 5' print(qc.query(query))</pre>
326. 326. 326. 326.	lec,coadd_object_id 957189,-39.754627,214322589 952661,-39.750899,214322483 963039,-39.806693,214324090 96187,-39.804521,214324026 961371,-39.801715,214323947

datalab CLI (on local computer)

\$databa query sql="select ra, dec, coadd_object_id from des_drl.main limit 5"
ra,dec,coadd object_id
326.957189,.39.754677,214322589
326.952661,.39.750899,214322483
326.963039,.39.806603,214324090
326.96187,.39.804521,214324026
326.96187,.39.804521,214324026
326.96187,.39.804521,214324026

Query from DL website

326 961 86999999998

sults 1-5 of 5 (5 before filtering) Show 10 V results per page						
xt boxes under each column define ielect All Rows Unselect All Rows		lition (e.g. <28:59:00) Apply Filter Clear Filter				
ra	dec	coadd_object_id «				
Number	Number	Number				
326.95718899999997	-39.754626999999999	214322589				
□326.95266099999998	-39.750898999999997	214322483				
Daac acaaaaaaaaaaaaaaa	20.0000000000000	21 422 4000				

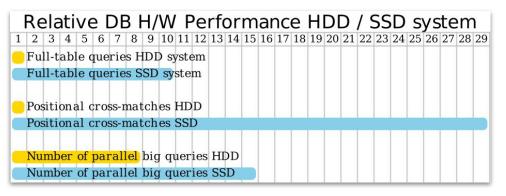
39.80171500000002

_		
AU	PA	
AU		•

qc.query('select * from gaia_dr2.gaia_source', out='?') # ? = mydb://<tablename> | vos://<filename>

- Query results can be either:
 - Streamed back to client \rightarrow Convert yourself, according to your needs
 - Loaded as table straight to user's MyDB \rightarrow *Great for subsequent x-matching*
 - Saved as file to user's VOSpace \rightarrow Great for sharing as a file with others
- Output can be streamed back in various formats, e.g.
 - CSV stream
 - Pandas data frame
 - VOTable, AstropyTable
 - Numpy array, record array, ...

result = qc.query('select * from gaia_dr2.gaia_source',\
 format='?') # ? = csv|ascii|array|structarray|table|pandas|fits|votable



R Getting to catalog data (3)

- Query performance is key
- Optimized PostgresSQL (config), optimized tables (index cols, dtype stacking)
- Fast H/W is paramount (throughput)
- In summer 2019 we switched to SSD-based systems

We are now purely CPU-bounded up to ~15 sustained large queries running in parallel; a good place to be!

• Expanding SSD storage again now (to ~150 TB, RAID-6)

Connecting catalogs with catalogs: Cross-matching

ASTRO

Python API (e.g. in Jupyter notebooks)

Positional cross-matching web tool (uses same API)

On the backend: (Quad Tree Cube, Q3C) Very fast! (Koposov & Bartunov 2006)

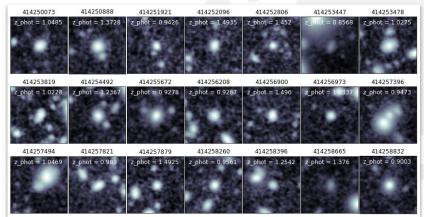
Tens of millions of rows in user table are no problem

.11	Virgotable3
irgotable3 a dec lick below to sele	MyDB Virtual Storag
a dec lick below to sele	
dec lick below to sele	
dec lick below to sele	ect output columns:
lick below to sele	ect output columns:
.11	ect output columns:
All	A
PROFESSION AND A STREET	A
rfid	
٢	
objname	-
	1
ick the 2nd table	: User table
	a Jec vr objname Pick the 2nd table

Connecting catalogs with catalogs: Cross-matching / Pre-computed x-match tables

- Originally: on a what-makes-sense-per-survey basis
- Now working toward an (almost) automated mechanism:
 - For each new data set, x-match against all reference sets *Astrometry*: latest Gaia gaia_edr3.gaia_source, gaia_dr2.gaia_source *Photometry*: latest NSC nsc_dr2.object, unwise_dr1.object *Spectroscopy*: latest sdss_drN.specobjall (currently N=16)
 - Default matching radius (1.5"), single nearest neighbor, no empty rows
 - Match table has few columns: id1, ra1, dec1, id2, ra2, dec2, angular distance
 - Re-compute when reference data sets are updated

Connecting catalogs with pixels: SIA service and image cutout


Simple Image Access:

- Query metadata DB about images that contain RA/Dec position
- Constraints are possible (i.e. exposure time, product type, ...)
- access_url field has link to FITS file
- **fov** argument used to compute a (usually) square cutout
- We query own image holdings & those at the NOIRLab Astro Data Archive

from pyvo.dal import sia svc = sia.SIAService("https://datalab.noirlab.edu/sia/gogreen_drl")

imgTable = svc.search((ra,dec), (fov, fov), verbosity=2).to_table().to_pandas()
imgTable

	assoc_id	access_url	access_format	access_estsize	dataproduct_type	dataproduct_subtype
0	b'gogreen_dr1'	b'http://datalab.noao.edu/svc/cutout? col=gogre	b'image/fits'	111924	b"	b"
1	b'gogreen_dr1'	b'http://datalab.noao.edu/svc/cutout? col=gogre	b'image/fits'	111924	b"	b"
n	ows × 61 colum	ins				

Discovering Our Universe Together

From the recent GOGREEN-Gemini-LLP & Data Lab joint DR1

User data storage services Co-location of user data and DL holdings

User file storage: VOSpace

- 1 TB / user (soft quota)
- read/write, access via storeClient.py and datalab CLI
- *public* / subdirectory to share files with other users
- read-only linked in user's Jupyter notebook space

User database: MyDB

- 250 GB / user (soft quota)
- read/write, access via queryClient.py and datalab CLI
- also used for very fast positional cross-matching

Public (read-only) file services to serve heterogeneous survey file collections, e.g.

- Arbitrary directory structure
- Weight masks, images, catalog files
- Documentation files
- "Aux" files... anything goes

Access through *storeClient.py* and *datalab* CLI

name que description	
name svc description	
chandra vos ChaMPlane: Measuring the Faint X-ray Bin	
cosmic dawn vos Cosmic DAWN survey	
deeprange vos Deeprange Survey	
deep ecliptic vos Deep Ecliptic Survey	
dls vos Deep Lens Survey	
flamex vos FLAMINGOS Extragalactic Survey	
fls vos First Look Survey	
fsvs vos Faint Sky Variability Survey	
ir bootes vos Infrared Bootes Imaging Survey	
lgs vos Local Group Survey	
gogreen dr1 vos GOGREEN DR1 Survey	
lmc vos SuperMACHO Survey	
ls dr1 vos DECam Legacy Survey DR1	
ls dr2 vos DECam Legacy Survey DR2	
ls_dr3 vos DECam Legacy Survey DR3	
ls dr4 vos DECam Legacy Survey DR4	
ls_dr5 vos DECam Legacy Survey DR5	
ls_dr6 vos DECam Legacy Survey DR6	
ls_dr7 vos DECam Legacy Survey DR7	
ls_dr8 vos DECam Legacy Survey DR8	
m31_newfirm vos M31 NEWFIRM Survey	
ndwfs vos NOAO Deep-Wide Survey	
nfp vos NOAO Fundamental Plane Survey	
nmbs vos NEWFIRM Medium Band Survey	
nmbs_2 vos NEWFIRM Medium Band Survey II	
nsc vos NOAO Source Catalog	
sdss_dr8 vos SDSS DR8	
sdss_dr9 vos SDSS DR9	
sdss_dr10 vos SDSS DR10	
sdss_dr11 vos SDSS DR11	
sdss_dr12 vos SDSS DR12	
sdss_dr13 vos SDSS DR13	
sdss_dr14 vos SDSS DR14 sdss_dr15 vos SDSS DR15	
singg vos Survey for Ionization in Neutral-Gas Gal smash dr1 vos SMASH DR1	
smash dr2 vos SMASH DR2	
simular vos SZE+Optical Studies of the Cosmic Accele	
w project vos The w Project	
zbootes vos z-band Photometry of the NOAO Deep-Wide	

Next: massively-multiplexed spectro

Next frontier are data products from massively-multiplexed spectroscopic surveys:

- Past and now: SDSS, including SDSS-V
- Now and soon: DESI
- Future: MSE, FOBOS, ...

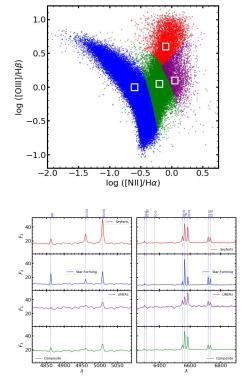
Issues:

- Traditional spectra access via FITS files is painfully slow (>1s)
- Overhead in file I/O.
- Not feasible for many spectra.
- ⇒ Develop fast spectro service.
- \Rightarrow How do we access millions of spectra quickly?

Dark Energy DESI Dark Energy Spectroscopic Instrument

- 40 million spectra of galaxies and quasars! \star
- 10 million spectra of stars *
- Commissioning/early SV data in 2019-20 *
- 5-year survey to start soon \star

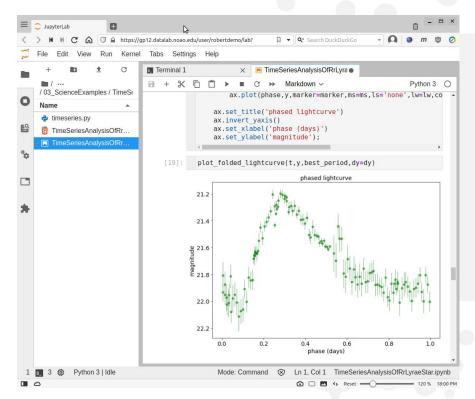
Object Class	Number of Spectra	Redshift Range
bright galaxies, r < 19.5	10 million	0 < z < 0.4
luminous red galaxies (LRGs)	4.2 million	0.4 < z < 1.0
emission line galaxies (ELGs)	18 million	0.6 < z < 1.6
quasars (QSOs)	2.4 million	0.5 < z < 3.5
Milky Way stars	10 million	



Mayall 4m (Kitt Peak, AZ)

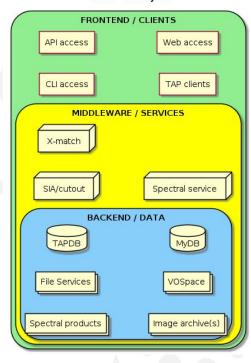
Stacking SDSS Spectra of Galaxies Selected from the BPT Diagram

- With Data Lab SDSS file service, the notebook executed in **7.5min using 4x100 spectra**
- Using the current DL Spectral Service demonstrator, notebook completes in 25 sec (8 sec for spectrum access)
- Currently developing production-level system that can scale to DESI


2'

Discovering Our Universe Together

- Remote computing, co-location with data
- No installation required (just a browser)
- Jupyter notebook server
- DL-curated NB suite + user-contributed NBs
- Full astro S/W stack installed
- Planned: users own their containers, e.g.
 can install S/W
 - can start from scratch any time
- Interfaces to data, to services, and to user storage (DB and VOSpace)



Bring your analysis to the big data

23

Data Lab layers

Many ways to connect to the data

- Support standard IVOA protocols wherever possible e.g. TAP, SIA, ADQL, (SSA)
- Develop purposefully custom mechanisms where needed e.g. PostgreSQL, Q3C
- Translate between layers where needed e.g. Data Lab queryClient, storeClient
- Support various access modes e.g. sync and async queries
- Support various (popular) access methods e.g. Python API (notebooks, scripting), CLI, TOPCAT, Web portal services

Planned: self-managed user groups

To enable easy user collaboration and data sharing:

- User can create group → *Spontaneous collaborations*
- Can invite/remove others → *Membership management by group itself*
- Can assign roles \rightarrow *E.g. admin, write+read, read-only*
- Can attach storage \rightarrow *Group-owned VOSpace and MyDB instances*
- Admin/owner can dissolve group again \rightarrow *Wrap it up when done*
- Projects can mint DOIs \rightarrow *E.g. for a paper manuscript*

Solutions exist already out there. Adapt and/or emulate what's great, e.g.:

- Sci Server's group management + storage volume attachment
- CADC VOSpace 2.0 with DOI minting capability

Sign up for a free Data Lab account: https://datalab.noirlab.edu/

Get help from the DL team (**we solve every help request**) Email: <u>datalab@noirlab.edu</u> Helpdesk: <u>https://datalab.noirlab.edu/help</u> User Manual: <u>https://datalab.noirlab.edu/docs/manual</u> Code base: <u>https://github.com/noaodatalab/</u> Suite of example NBs: <u>https://github.com/noaodatalab/notebooks-latest/</u> Ping us on Twitter: @DataLabAstro

The three things to take away

- A Science Platform combines big data, co-located (remote) compute, data discovery, easy data access, analysis, visualization, and collaborative working.
- As part of the larger NOIRLab data ecosystem, the *Data Lab Science Platform* does all these, while hosting one of the largest collections of photometric data, image datasets, and adding spectroscopic capabilities. Importantly, users can access all data products from raw to HLSP.
- We are a *community* Science Platform: users-first, open-source (client code and NB collection), open-access (most data sets), open-standards (supporting IVOA standards and interoperability).

Obrigado. Thank you.

robert.nikutta@noirlab.edu datalab.noirlab.edu

