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What is a gravitational wave ?

A gravitational wave is a tiny ripple in the curvature of
spacetime that propagates at the vacuum speed of light
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Key prediction of Einstein's general theory of relativity



Electromagnetic vs gravitational waves

Electromagnetic waves Gravitational waves

Origin electromagnetic field spacetime curvature
Nature waves in spacetime waves of spacetime
Sources accelerated charges accelerated masses
Wavelength  « size of source 2 size of source
Structure dipolar quadrupolar
Coherence low high

Interaction strong weak

Detection power amplitude

Analogy vision audition

Complementary sources of information about the Universe



The gravitational-wave spectrum

Quantum fluctuations in early universe
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Ground-based interferometric detectors

LIGO Hanford LIGO Livingston
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Masses in the Stellar Graveyard
in Solar Masses
LIGO-Virgo Black Holes

K ] X. } j. IE' .L‘.L'

R (SR,

° o K_. \—© @ EM Black Holes

)]
]
o
J

1 A LIGO-Virgo Neutron Stars ”
L]

LIGO-Virgo | Frank Elavsky | Northwestern



Gamma rays, 50 to 300 keV GRB 170817A
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The birth of multimessenger astronomy
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Gravitational-wave science

Fundamental physics

Strong-field tests of GR

Black hole no-hair theorem

® Cosmic censorship conjecture

® Dark energy equation of state

® Alternatives to general relativity

Astrophysics
® Formation and evolution of compact binaries
® Origin and mechanisms of «-ray bursts
® Internal structure of neutron stars

Cosmology
® Cosmography and measure of Hubble's constant
® Origin and growth of supermassive black holes
® Phase transitions during primordial Universe
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LISA: a gravitational antenna in space

Earth 25 milion kM

The Laser Interferometer Space Antenna was selected in
2017 by ESA for L3 mission with a launch planned for 2034



LISA: a gravitational antenna in space
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ESA’s LISA Pathfinder mission has demonstrated the technology
needed to build a space-based observatory [PRL 120 (2018) 061101]
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10—16

Gravitational wave sources for LISA
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@® Sgr A* as a GW source for LISA



Dec. offset from Sgr A* (arcsec)
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Spin distribution of supermassive BHs
[Reynolds, Nat. Astron. 3 (2019) 41]
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Orbital radius, ro/ M

Circular orbits around a spinning black hole

Retrogra‘de spin Progradé spin
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GW frequencies of Sgr A* close orbits
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GW frequencies of Sgr A* close orbits
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Previous work on Sgr A* as a LISA source

Low-mass main-sequence stars are good candidates for LISA
[Freitag, ApJ 583 (2003) L21] [Barack & Cutler, PRD 69 (2004) 082005]

Zero-eccentricity EMRIs from binaries tidally split by Sgr A*
[Miller et al., ApJ 631 (2005) L117]

Extreme mass ratio bursts of GW from highly eccentric orbits
[Berry & Gair, MNRAS 429 (2013) 589]

GW from orbiting MS stars undergoing Roche lobe overflow
[Linial & Sari, MNRAS 469 (2017) 2441]

Ensemble of macroscopic dark matter candidates, e.g. PBHs
[Kiihnel et al. (2018), gr-qc/1811.06387]

LISA could detect tens of brown dwarfs orbiting Sgr A*
[Amaro-Seoane (2019), gr-qc/1903.10871]



Our study

Fully relativistic framework

¢ Gravitational waveform from linearized Einstein equation

¢ Tidal effects from theory of Roche potential around BHs


http://bhptoolkit.org/
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Limitation to circular orbits; but
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® |n situ formation of MS stars [Collin & Zahn, A&A 2008]
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Our study

Fully relativistic framework

¢ Gravitational waveform from linearized Einstein equation

¢ Tidal effects from theory of Roche potential around BHs

Limitation to circular orbits; but

® Zero-eccentricity EMRIs [Miller et al., ApJ 2005]
® [n situ formation of MS stars [Collin & Zahn, A&A 2008]

® About 3/4 of all orbiting brown dwarfs [Amaro-Seoane, PRD 2019]

All computations have been implemented in a Python package for
SageMath that is part of the Black Hole Perturbation Toolkit:

http://bhptoolkit.org/
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Roche radius around a spinning black hole
[Dai & Blanford, MNRAS 434 (2013) 2948]
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Roche radius around a spinning black hole
[Dai & Blanford, MNRAS 434 (2013) 2948]
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Roche radius around a spinning black hole
[Dai & Blanford, MNRAS 434 (2013) 2948]

1/3 1/3
e~ 1.14 (M> — R_.338 (p@>
) M

Jupiter Sun Earth red dwarf  brown dwarf  white dwarf
u/Mg  9.55 x 1074 1 3.0 x 10— 0.20 0.062 0.80
R/Ro 0.10 1 9.17 x 1073 0.22 0.078 5.58 x 10~3
P/Po 0.94 1 3.91 18.8 131. 1.10 x 106
rR/M 34.9 34.2 21.9 13.3 7.31 0.28

(nonspinning black hole, irrotational body)



Signal-to-noise ratio in the LISA detector
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Signal-to-noise ratio in the LISA detector
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Signal-to-noise ratio in the LISA detector

Object rn/M SNR (1d) SNR (1yr)
1M star 34.5 3.2 61
0.3Mg red dwarf 15.7 54 1.0 x 103
0.05M brown dwarf 8.4 165 3.2 x 103
compact object (a = 0) 6 15x10* 2.8 x10°

compact object (a = 0.5) 42 49 x10* 9.4 x 10°
compact object (a = 0.98) 1.6 21x105 4.0 x 10°

(inclination angle 6 = 0)



Minimal detectable mass by LISA

SNR=10 (T=1yr)
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Maximal orbital radius for LISA detection

SNR=10 (T'=1yr)
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Time spent in LISA band during inspiral

Adiabatic inspiral driven by
energy balance:

E=—(Fo+ ) =—Fo

!
" E()

dr
r ~F'OO (r)

Tinsp[rla r2] =~

I'Roche

I'min = Nsco (compact object)
Tin—band = Tinsp[rO,maxa rmin] where
'min = Roche (other body)



Time in-band for an inspiralling compact body
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Time in-band for brown dwarfs and MS stars

brown dwarf red dwarf Sun-type 2.4Mg-star

/Mg 0.062 0.20 1 2.40
0/Po 131. 18.8 1 0.37
10,max/ M 28.2 35.0 47.1 55.6
"Roche/ M 7.31 13.3 34.2 47.6
Tin-band [10° yr] 4.98 3.72 1.83 0.94

(nonspinning black hole, irrotational star, inclination angle 6 = 0)
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Brown dwarfs are promising candidates

X-MRIs:
Extremely Large Mass-Ratio Inspirals

Pau Amaro-Seoane'? %4

! Institute of Space Sciences (ICE, CSIC) & Institut d’Estudis Espacials de Catalunya (IEEC) at Campus UAB,

Carrer de Can Magrans s/n 08193 Barcelona, Spain
2Ka'ulz Institute for Astronomy and Astrophysics at Peking University, 100871 Beijing, China
3 Institute of Applied Mathematics, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China
4 Zentrum fiir Astronomie und Astrophysik, TU Berlin, Hardenbergstrafe 36, 10623 Berlin, Germany
(Dated: May 30, 2019)

For my dear friend Tal Alexander. Thanks for having been a human being.

The detection of the gravitational waves (GWs) emitted in the capture process of a compact
object by a massive black hole (MBH) is known as an extreme-mass ratio inspiral (EMRI) and
represents a unique probe of gravity in the strong regime and is one of the main targets of the Laser
Interferometer Space Antenna (LISA). The possibility of observing a compact-object EMRI at the
Galactic Centre (GC) when LISA is taking data is very low. However, the capture of a brown dwarf
(BD), an X-MRI, is more frequent because these objects are much more abundant and can plunge
without being tidally disrupted. An X-MRI covers some ~ 10® cycles before merger, and hence stay
on band for millions of years. About 2 x 10° yrs before merger they have a signal-to-noise ratio
(SNR) at the GC of 10. Later, 10* yrs before merger, the SNR is of several thousands, and 10*
yrs before the merger a few 10%. Based on these values, this kind of EMRIs are also detectable at
neighbour MBHs, albeit with fainter SNRs. We calculate the event rate of X-MRIs at the GC taking
into account the asymmetry of pro- and retrograde orbits on the location of the last stable orbit.
‘We estimate that at any given moment, and using a conservative approach, there are of the order of
2 20 sources in band. From these, 2 5 are highly eccentric and are located at higher frequencies,
and about 2 15 are circular and are at lower frequencies. Due to their proximity, X-MRIs represent
a unique probe of gravity in the strong regime. The mass ratio for a X-MRI at the GC is ¢ ~ 10%, i.e.,
three orders of magnitude larger than stellar-mass black hole EMRIs. Since backreaction depends
on ¢, the orbit follows closer a standard geodesic, which means that approximations work better in
the calculation of the orbit. X-MRIs can be sufficiently loud so as to track the systematic growth
of their SNR, which can be high enough to bury that of MBH binaries.
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A low-mass star candidate?

MNRAS 474, 3380-3390 (2018)
Advance Access publication 2017 November 15

A 149 min periodicity underlies the X-ray flaring of Sgr A*

Elia Leibowitz*
School of Physics & Astronomy and Wise Observatory, Sachler Faculty of Exact Sciences, Tel Aviv University

Accepted 2017 November 13. Received 2017 November 13; in original form 2017 May 9

ABSTRACT

In a paper in 2017, I have shown that 39 large X-ray flares of Sgr A* that were recorded by
Chandra observatory in the year 2012 are concentrated preferably around tick marks of an
equi-distance grid on the time axis. The period of this grid as found in that paper is 0.1033 d.
In this work I show that the effect can be found among all the large X-ray flares recorded by
Chandra and XMM — Newton along 15 yr. The mid-points of all the 71 large flares recorded
between years 2000 and 2014 are also tightly grouped around tick marks of a grid with this
period, or more likely, 0.1032 d. This result is obtained with a confidence level of at least
3.270 and very likely of 4.62¢'. I find also a possible hint that a similar grid is underlying IR
flares of the object. I suggest that the pacemaker in the occurrences of the large X-ray flares
of Sgr A* is a mass of the order of a low-mass star or a small planet, in a slightly eccentric
Keplerian orbit around the SMBH at the centre of the Galaxy. The radius of this orbit is about
6.6 Schwarzschild radii of the BH.

Key words: black hole physics —Galaxy: centre — X-rays: individual: Sgr A*.
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3.270 and very likely of 4.62¢'. I find also a possible hint that a similar grid is underlying IR
flares of the object. I suggest that the pacemaker in the occurrences of the large X-ray flares
of Sgr A* is(a mass of the order of a low-mass star or a small planet, in a slightly eccentric
Keplerian orbit around the SMBH at the centre of the Galaxy. The radius of this orbit is about
6.6 Schwarzschild radii of the BH.

Key words: black hole physics —Galaxy: centre — X-rays: individual: Sgr A*.



Summary

We have computed the GW emission and SNR in LISA for
close circular orbits around Sgr A* in full general relativity

Compact objects, MS stars of mass < 2.5Mg and brown
dwarfs orbiting Sgr A* are all detectable in 1 yr of data

LISA can detect orbiting masses close to the ISCO as small
as 1 Mg if Sgr A* is a fast rotator — primordial BHs

The time spent in LISA band (SNR > 10) during the slow
inspiral is ~ 10° — 10° yr, making brown dwarfs promising
candidates

Sgr A* is a valuable target for LISA
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