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Polyspectra: Definition

Given a random field Φ(x), we define the n-point correlation
function:

〈Φ(x1) · · ·Φ(xn)〉

is defined as the excess probability, compared to a random
distribution, of finding n points in a certain configuration.

The polyspectrum of order n-1 is the Fourier
counterpart of the n-point correlation function.
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Power Spectrum

Given a field Φ(x) and its Fourier transform

Φ(k) =

∫
d3xΦ(x)e ik·x

Power Spectrum:

〈Φ(k1)Φ(k2)〉 = (2π)3δ(3)(k1 + k2)PΦ(k1)
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k2



Bispectrum

Bispectrum:

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3)
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Trispectrum

Trispectrum:

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 = (2π)3δ(3)(k1+k2+k3+k4)TΦ(k1, k2, k3, k4)
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Polyspectra: Statistical definition

In statistics, the polyspectra are related to the momenta of a
distribution.

P(k) −→ variance

B(k1, k2, k3) −→ skewness

T (k1, k2, k3) −→ kurtosis



Gaussian distribution

A Gaussian distribution is fully described by the lowest moments:
mean (µ) and variance (σ):

G (x) = 1√
2πσ

e
−(x−µ)2

2σ2

Skewness = Kurtosis = 0



Gaussian vs Non-Gaussian
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fNL: Skewness
Skewness: asymmetry of the distribution.
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gNL: Kurtosis
Kurtosis: height of the tails of the distribution.
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Polyspectra on the Sphere

If the field is defined on the sphere, the Fourier transform is
performed using the Spherical Harmonics, i.e. the basis for the
functions defined on S2.

Φ(x) =

∫
d3xΦ(k)e−ik·x −→

∞∑
l=0

l∑
m=−l

almYlm(x)

Φ(k) −→ alm

P(k) −→ Cl

B(k1, k2, k3) −→ Bl1l2l3

T (k1, k2, k3, k4) −→ Tl1l2l3l4
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What do we study?

What do they have in common?



Inflationary seeds

Both CMB and LSS were seeded by Inflaton vacuum perturbation!



Inflation



Inflaton and Inflation

INFLATON φ(x, t) = φ0(t) + δφ(x, t)

I Spatial average of the field

I Vacuum Fluctuations

Vacuum
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Primordial Gravitational Field

We can write the primordial gravitational field Φ(x) by mean of the
so-called Bardeen potential:

Φ(x) = ΦL(x) + fNL(ΦL(x)2 − 〈ΦL(x)2〉) + gNL[ΦL(x)3]

Gaussian component

non-Gaussian component
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Non-Gaussianity

The amplitude of fNL and gNL affect both the photon and the
matter distribution.

CMB: the distribution of the anisotropies inherits the primordial
non-gaussianity.

LSS: fNL and gNL affect the way the gravitational collapse happens.
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Last Remark

There is NOT only one Inflation model.

Single-Field

I Standard Scenario

I k-inflation

I DBI inflation

I ...

Multi-Fields

I Curvaton Scenario

I Ghost inflation

I D-cceleration scenario

I ...

Which is the correct one?
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Last Remark

Standard Model
The primordial fluctuation distribution is GAUSSIAN.

Non-Standard Models
The primordial fluctuation distribution is NON-GAUSSIAN.

The amounts of non-Gaussianity depends on the model.
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Large Scale Structure of the Universe



Matter Bispectrum

LSS bispectrum is composed by two terms:

B(k1, k2, k3) = BI (k1, k2, k3) + BG (k1, k2, k3),

where BI is the primordial bispectrum, parametrized by fNL,
and BG is the gravitational evolution bispectrum.



Matter Bispectrum
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3D triangle configuration
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Photometric Samples



Photometric Filters



Photometric Error

φ(z) =
dNg

dz

∫
dzp P(z |zp)W (zp)



Dataset
Measurements performed on 125 LSS mocks covering 1/8 of sky
at z = 0.5 from MICE catalogue (Fosalba et al. 2008, Crocce et
al. 2010).
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Results
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CMB Non-Gaussianity

Primordial
NG

Anisotropies
NG

Evaluate NG in the CMB allows to constrain the inflationary
models.
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NG Estimators

fNL

3rd-order
momentum:

Skewness

Bispectrum

gNL

4th-order
momentum:

Kurtosis

Trispectrum



State of the Art

Optimal Estimator : Unbiased estimator with the lowest variance
among the other ones. Planck Collaboration (2015):

fNL = 2.5 ± 5.7 (1σ)

Single-field models are preferred.
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Spherical Needlet System

ψjk(x) :=
√
λjk
∑
l

b

(
l

B j

) l∑
m=−l

Ylm(ξjk)Y lm(x)
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Localization Property

Localization property in real space means raise of the statistical
significance in presence of incomplete sky coverage (i.e. ALWAYS).



Needlet Coefficients

Reconstruction Formula:

T (x) =
∑
l ,m

almYlm(x) =
∑
j ,k

βjkψjk(x)



Needlet Deconvolution
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-71.5606 68.7117 -216.269 215.141



gNL Estimation
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σgNL Estimation
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Future Perspectives

I The angular bispectrum of LSS seems to work well when
compared with predictions, now it is time to constrain
parameters with it;

I The Needlet trispectrum of CMB is computational feasible
and ready to constrain gNL from PLANCK data.


