Probing Cosmic Acceleration with Galaxy Clusters

Hao-Yi (Heidi) Wu The Ohio State University

Overview

- Introduction
 - Cosmic acceleration
 - Galaxy cluster surveys
- Gravitational lensing for current & next generation cluster cosmology
 - Part I: Cluster lensing signals
 - Part II: Covariance matrices

Discovery of cosmic acceleration

Adam G. Riess

Saul Perlmutter

Brian P. Schmidt

National University

2011 Nobel Prize in Physics

Perlmutter, Schmidt, and Riess used Type Ia Supernovae to accurately determine the **redshift-distance relation**. They found that the Universe is accelerating.

Dark matter vs. dark energy

In general, $P = w \rho$ (equation of state), $\rho \propto a^{-3(1+w)}$ w = -1: cosmological constant

What causes the cosmic acceleration?

We need measurements other than the expansion rate.

Dark energy slows down the growth of large-scale structure

Sims: Jenkins et al. (1998)

Observing the density peaks as a function of time can help us constrain dark energy parameters.

Overview

- Introduction
 - Cosmic acceleration
 - Galaxy cluster surveys
- Gravitational lensing for current & next generation cluster cosmology
 - Part I: Cluster lensing signals
 - Part II: Covariance matrices

Galaxy clusters: the highest density peaks

2%

10%

88%

 $1 \text{ M}_{\odot} \approx 2 \times 10^{30} \text{ kg}$ Mass ~ 10^{14} to 10^{15} M_{\odot} Size ~ a few million parsecs (Mpc)

1 parsec \approx 3 lightyears $\approx 3 \times 10^{16} \,\mathrm{m}$

How do galaxy clusters form?

Simulation: Heidi Wu. Visualization: Ralf Kaehler

Measuring dark energy using the number counts of galaxy clusters

We need to infer cluster mass from observable properties.

Dark energy constraints from clusters

de Haan et al. (2016), South Pole Telescope

Optical surveys of galaxy clusters

2013-2019 4m Blanco Telescope in Chile 1/8 of sky, 300 million galaxies, ~200,000 clusters

wfirst.gsfc.nasa.gov launch: mid-2020s

Importance of precise mass calibration

How to measure the mass of galaxy clusters?

Galaxies

- Number of galaxies (richness)
- Velocity dispersion

- X-ray emission
- Sunyaev-Zeldovich (SZ) effect: scattering of photons of cosmic microwave background (CMB)

Dark matter halo

Gravitational lensing

How to measure the mass of galaxy clusters?

Galaxies

Dark matter halo

- Number of galaxies (richness)
- Velocity dispersion (Wu et al. 2013)
- X-ray emission (Wu et al. 2015)
- SZ effect

Gravitational lensing (this talk)

Overview

- Introduction
 - Cosmic acceleration
 - Galaxy cluster surveys
- Gravitational lensing for current & next generation cluster cosmology
 - Part I: Cluster lensing signals
 - Part II: Covariance matrices

Measuring halo mass using gravitational lensing effect

Strong lensing (rare)

Measuring halo mass using gravitational lensing effect

Weak lensing (everywhere)

Inferring cluster mass from weak lensing

Figure from Wikipedia

Distance to cluster center

Lensing signal: tangential shear (γ_t) ~ excess surface mass density ($\Delta\Sigma$)

Part I: Modeling the cluster lensing signal using simulations

in collaboration with Zhuowen Zhang, Chun-Hao To, Yuanyuan Zhang, Tom McClintock, Matteo Costanzi, Eduardo Rozo, Joe DeRose, and many others in the **Dark Energy Survey** collaboration Buzzard Simulations DeRose et al. (arXiv: 1901.02401)

- Mock catalogs for the DES volume
- Based on dark matter N-body simulations.
- Galaxies are assigned to dark matter particles based on local density
- Recovering the observed galaxy correlation functions

redMaPPer Cluster Finder Rykoff & Rozo et al. (2014)

- Identifying clusters using red-sequence in photometric data
- Assigning cluster membership probability for each galaxy
- Richness "λ" (similar to the number of galaxies in a cluster)
- For Buzzard sims, we apply redMaPPer to the halo center (thus avoiding mis-centering effect)

Combining the weak lensing signal of clusters of similar "richness" (# of galaxies)

Combining the weak lensing signal of clusters of similar "richness" (# of galaxies)

Combining the weak lensing signal of clusters of similar "richness" (# of galaxies)

Projected Distance [Mpc/h]

Is there a selection bias in this process?

Step 1: selecting clusters based on richness, calculating the PDF of the underlying halo mass

Step 2: select random halos from the entire sim to match this mass PDF Step 3: taking the ratio of lensing signals. The ratio would be 1 if there's no selection bias. We found ~10-30% bias in lensing signal.

Systematic effect 1: Orientation Bias Systematic effect 2: Projection Effect

Impact of halo orientation on cluster lensing

Impact of orientation on selection

Impact of halo orientation on richness

Preliminary

Systematic effect 2: Projection Effect

Projection effect changes observed richness

- The true number of galaxies in a cluster (true richness, or λ_{true}) has some intrinsic scatter.
- If redshift uncertainties are large, we tend to include galaxies along the line-of-sight as cluster members (observed richness, or λ_{obs}).
- Projection effect thus changes richness and adds scatter.
- Mass along the line-of-sight can also increase lensing signal.

Quantifying the projection effect (Costanzi et al. 2019)

λ(z): measuring
 richness at various
 redshift

- Peak: contribution from galaxies in the cluster
- Wings: contribution comes from galaxies outside the cluster

The spread of $\lambda(z)$ quantifies the projection effect (denoted as σ_z)

Cluster finders tend to select clusters with stronger projection effect

Orientation & projection can explain most of the lensing biases

Preliminary

Summary of Part I: Modeling cluster lensing signals

- Stacked weak lensing signal based on richnessselected clusters can suffer from selection bias.
- Orientation bias: halos with axes parallel to line-ofsight has higher richness and stronger lensing signal.
- Projection effect: changes richness and lensing signal simultaneously.
- Taking into account these two effect removes most of the systematic errors of lensing. We are working on detailed modeling for cosmology analyses.

Part II: Modeling the covariance matrices for cluster lensing

in collaboration with Andres Salcedo, Ben Wibking, David Weinberg, and others in the **WFIRST** team

Simulations vs. Analytic Calculations

- Analytic calculations: cannot capture medium/small-scale correctly
- Ray-tracing sims: limited to > 1 Mpc, expensive to run
- We combine high-resolution N-body sims with analytic calculations, validating with ray-tracing sims.

Three major components for lensing covariance matrices

- 1. Shape noise $(~1/N_{gal})$
- 2. Large-scale structure (analytical calculations)
- Intrinsic variation of halo density profile (small-scale, N-body sims)

Shape noise due to intrinsic galaxy ellipticity

Noise from Large-Scale Structure

- All uncorrelated large-scale structures in front of source galaxies contribute to lensing noise.
- It dominates large-scale lensing error (where cluster signal is low and shape noise is also low).
- It can be calculated analytically assuming Gaussian random field.

Figure from Millennium Simulation

Noise from Intrinsic Variation of Halo Density Profiles

 At a given halo mass, halos have diverse projected density profiles due to different concentration, triaxial shape, etc.

Combining N-body simulations and analytical calculations

Small scales: using halos from N-body simulations
Large scales: analytical calculations assuming Gaussian random fields (infeasible to use N-body simulations)

 Grafting the two regimes together, validating with ray-tracing simulations

A full cluster lensing covariance matrix

Off-diagonal elements decrease rapidly, especially at largescales.

Importance of off-diagonal elements

47

Ignoring the off-diagonal elements would lead to ~2x underestimation of lensing error budget
The underestimation is worse when shape noise is low

Importance of shape noise

Summary of Part II: Cluster lensing covariance matrix

- Current cluster surveys like DES are limited by shape noise. For future cluster surveys like LSST and WFIRST, the noise will be dominated by large-scale structure and halo profile variance.
- We combine analytic calculations and high-resolution Nbody simulations to calculate the covariance matrix accurately.

Summary

- The abundance of galaxy clusters is a sensitive probe of cosmic acceleration.
- Calibrating the mass-observable relation is the key for cluster cosmology.
- Optical surveys use stacked gravitational lensing to calibrate cluster mass. We use simulations to remove the systematic uncertainties.
- Upcoming optical surveys like LSST, WFIRST will achieve unprecedented precision for gravitational lensing and push our horizons further.