Measuring cosmological parameters in the large scale structure through redshift space distortions and Alcock-Paczynski effects

Héctor Gil-Marin Institut de Ciències del Cosmos ICCUB (U. Barcelona)

> Laboratório Interinstitucional de e-Astronomia 13th June 2019

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Outline

- 1. Introduction to cosmology with LSS: BAO and RSD
- 2. Cosmology with galaxy surveys: BOSS & eBOSS
- 3. Higher-order statistics: the bispectrum
- 4. Future analyses: DESI

Cosmological Standard Model

CMB observations (WMAP, Planck)

- Flat Universe
- Universe dominated by **dark** components

Within the context of GR **Dark Energy** is understood as a macroscopic manifestation of the quantum vacuum energy

Other possibilities: modify GR, scalar field, ...

Different expansion rate through time and different logarithmic growth of structure factor.

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Introduction to cosmology with LSS: BAO and RSD

Baryon Acoustic Oscillations

Introduction to cosmology with LSS: BAO and RSD

Main Goal of redshift surveys: BAO & RSD

Main Goal of redshift surveys: BAO & RSD

Growth of structure: Ratio monopole to quadrupole $\sim f\sigma_8$

BAO peak position: Isotropic signal ~ $(D_A^2/H)^{1/3} / r_s$

BAO relative peak position: isotropic vs. anisotropic $\sim D_AH$

$$H(z, \mathbf{\Omega}) = H_0 \sqrt{\Omega_m^0 (1+z)^3 + \Omega_\Lambda}$$
$$D_A(z, \mathbf{\Omega}) = \frac{1}{1+z} \int_0^z \frac{cdz'}{H(z', \mathbf{\Omega})}$$
$$f(z, \mathbf{\Omega}) = \frac{d \log D_{\text{lin}}(z, \mathbf{\Omega})}{d \log a(z)} = \Omega_m(z, \mathbf{\Omega})^\gamma$$

Clustering of Tracers: What do we measure?

Distortions along and across the line of sight

Alcock-Paczynski effect

This effect distorts the homogeneity and isotropy of BAO as a function of Ω_{true} & $\Omega_{fiducial}$

• Dark matter over-density, $\delta(r) \equiv \frac{\rho(r)}{\bar{\rho}} - 1$ $\delta(k) = \int \delta(r)e^{ikr} dx$

- 2-point correlation function (2pCF), $\langle \delta(r)\delta(r+R) \rangle = \xi(R)$
 - Power Spectrum (PS) $\langle \delta(k)\delta^*(k')\rangle = (2\pi)^3 P(k)\delta^D(k+k')$

The PS and 2pCF are the *observables* for RSD and BSO

 δ -field is fully characterised by PS/2pCF if δ is Gaussian

Alcock-Paczynski & Redshift Space Distortions

• **AP effect**: Anisotropy induced by transforming redshifts into coming distances assuming a *wrong cosmology*

Alcock-Paczynski & Redshift Space Distortions

 AP effect: Anisotropy induced by transforming redshifts into coming distances assuming a <u>wrong cosmology</u>

BAO shift, but no extra anisotropy

 $\sim (D_A^2/H)^{1/3} / r_s$

Relative BAO shift along and across the line-of-sight + induced anisotropy

 $\sim D_A H$

Redshift Space Distortions

- Universe assumed **isotropic** and **homogeneous**
- RSD: Enhancement / reduction of the clustering along the line-of-sight (LOS) direction due to peculiar velocities (Kaiser 1987)

Induces anisotropy but does not shift the BAO $\sim f\sigma_8$

Redshift Space Distortions

 $b\sigma_8$

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- BAO is the most distinct feature in ξ(s) and P(k) to look at.
- Position is robust under potential systematics:
- Non-linear effects are >1%
- BAO position not affected by bias or Kaiser boost
- However, the feature is damped by non-linear velocity bulks (can be solved using reconstruction)

State of the art of measurements: BOSS & eBOSS

Institut de Ciències del Cosmos

UNIVERSITAT DE BARCELONA

ICCUB

- APO, 2.5-meter Telescope
- Spectroscopic Galaxy
 Survey
- 2009 2014 BOSS: LRG+Lya
- 2014-2019 eBOSS: ELG, LRG, QSO+Lya

Measuring cosmological parameters in the large scale structure through RSD and AP

~10⁶ LRG targets

Modelling the power spectrum: full shape vs. BAO

There are two main kind of complementary analyses:

- 1. **BAO analysis**: Based on the position of the BAO-peak
 - Constrain on $D_A(z)$ and H(z) through the BAO-feature only
 - It only requires the modelling of the oscillation, not the shape/amplitude of the broadband signal
 - Usage of reconstruction algorithm to enhance the significance of the peak
- 2. **Full Shape analysis** (aka RSD): Based on the PS full shape and amplitude signal
 - Constrain the growth of structure, $f\sigma_8(z)$, $D_A(z)$ and H(z) through the shape and amplitude of a range of scales.
 - It requires a full modelling of the amplitude and shape of the power spectrum multipoles (and bispectrum)

DR12 CMASS Post-recon

BAO Analysis

- Reconstruction suppresses RSD & non-linearities
- Quadrupole is close to be 0
- Work with monopole and μ^2 -moment

$$P^{(\mu^2)} \equiv \frac{2}{5}P^{(2)} + P^{(0)}$$

k P⁽ⁱ⁾ [(Mpc/h)²] 500 BAO-peak position, α, is related to AP-dilation parameters, -500 $P^{(\mu^2)}$ / $P^{(\mu^2)}_{sm}$ 1.2 µ²-moment $\alpha_{\parallel} = \alpha_0^{-3/2} \alpha_2^{5/2} \quad \alpha_{\perp} = \alpha_0^{9/4} \alpha_2^{-5/4}$ 1.1 0.9 0.8 P⁽⁰⁾ / P_{sm}⁽⁰⁾ 1.3 1.2 1.1 $P_{bao}(k,\alpha_{0,2}) = P_{sm}(k) \left\{ 1 + \left[O_{lin}(k / \alpha_{0,2}) - 1 \right] e^{-\frac{1}{2}k^2 \Sigma_{nl}^2} \right\}$ 0.9 0.8 $\Delta P/\sigma_P$ where, $P_{sm}(k) = B^2 P_{lin,sm}(k) + A_1 k + A_2 + \frac{A_3}{k} + \dots$ 0.02 0.05 0.1 k [hMpc⁻¹]

2000

1500

1000

models the broadband

Measuring cosmological parameters in the large scale structure through RSD and AP

0.2

0.3

Monopole + Quadrupole

Full Shape Analysis

- Non-linear dark matter PS shape
 Perturbation Theory 2-loop
- Galaxy bias,

Non-linear & non-local

Redshift Space distortions
 TNS-model

$$P_g^{(s)}(k,\mu) = D_{\text{FoG}}^P(k,\mu,\sigma_{\text{FoG}}^P[z]) \left[P_{g,\delta\delta}(k) + 2f\mu^2 P_{g,\delta\theta}(k) + f^2\mu^4 P_{\theta\theta}(k) + b_1^3 A(k,\mu,f/b_1) + b_1^4 B(k,\mu,f/b_1) \right]$$

 $P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta} \rightarrow \text{Dark Matter non-linear models}$ $D_{\text{FoG}}^P \rightarrow 1\text{-parameter Lorentzian damping term}$ $A, B \rightarrow \text{TNS functions}$

The total number of free parameters of the model is,

- Bias Parameters: b_1 , b_2
- Cosmology Parameters: f, σ_8
- AP parameters: α_{\parallel} , $\alpha_{\perp} \rightarrow D_A/r_s(z_d)$ and $H(z)r_s(z_d)$
- Fingers-of-God: $\sigma_{\rm FoG}$
- Shot noise amplitude $A_{
 m Noise}$
- 8 free parameters \rightarrow 4 cosmological, 4 "nuissance"

Main BOSS results from PS/CF FS+BAO

Alam et al. 2016

- Good Agreement with Planck+GR
- First time 1% precision BAO measurement

Main BOSS+eBOSS quasars

Cosmology Interpretation

GR & ACDM assumed

D_A(z), H(z), fo₈(z) from BOSS galaxies / eBOSS quasars

flat ACDM assumed

D_A(z), H(z), fo₈(z) from BOSS galaxies / eBOSS quasars

Beyond the 2-point statistics

• Quantity which is essentially non-linear If all the $\delta(\mathbf{k})$ modes evolve linearly (and the initial conditions are Gaussian) the bispectrum is 0 and all the information on the system of objects/galaxies is described by the power spectrum.

Probability of finding 3 galaxies separated by r, s and t: $P_3(r, s, t) =$ $[1 + \xi_2(r) + \xi_2(s) + \xi_2(t) + \zeta(r, s, t)]dV_1 dV_2 dV_3$ The bispectrum is defined as the FT of ζ ,

$$B(\mathbf{k}_1,\mathbf{k}_2) \equiv \int d\mathbf{r} \, d\mathbf{s} \, \zeta(\mathbf{r},\mathbf{s}) e^{-i\mathbf{r}\cdot\mathbf{k}_1} e^{-i\mathbf{s}\cdot\mathbf{k}_2}$$

Beyond the 2-point statistics

Definition

• Potential usage

$$\delta(x) = \frac{\rho(x) - \overline{\rho}}{\overline{\rho}} \xrightarrow{FT} \delta_k$$
$$\left\langle \delta_{k1} \delta_{k2} \delta_{k3} \right\rangle = \left(2\pi\right)^3 B(k_1, k_2) \delta^D(k_1 + k_2 + k_3)$$

Bispectrum is 0 when $\boldsymbol{\delta}$ is a Gaussian field

- Mode-coupling leak BAO & RSD information from P into B, T, ...
- Reconstruction 'Gaussianizes' δ and partially solve this issue (but assumes Ω_m and need high density of tracers).
- B can break degeneracy between f and σ₈ in RSD analyses when P(k) is used.
- Primordial non-Gaussian signal in P and B
- Modified-GR signal inside F-kernels (first order B)

Measuring cosmological parameters in the large scale structure

Measurement BOSS LRGs 0.43 < z < 0.70

Hector Gil Marin

Modelling the Bispectrum (1st order)

Real Space,

$$B_{g}(\vec{k}_{1},\vec{k}_{2}) = b_{1}^{4} \sigma_{8}^{4} \left\{ 2P_{lin}(k_{1})P_{lin}(k_{2}) \left[\frac{1}{b_{1}} F_{2}^{(s)}(\vec{k}_{1},\vec{k}_{2}) + \frac{b_{2}}{2b_{1}^{2}} + \frac{2}{7b_{1}^{2}} (1-b_{1})S_{2}(\vec{k}_{1},\vec{k}_{2}) \right] + cyc. \right\}$$

$$F_{2}^{(s)}(\vec{k}_{i},\vec{k}_{j}) = \frac{5}{7} + \frac{1}{2}\cos(\alpha_{ij}) \left[\frac{k_{i}}{k_{j}} + \frac{k_{j}}{k_{i}} \right] + \frac{2}{7}\cos^{2}(\alpha_{ij}) \left[\frac{k_{i}}{k_{j}} + \frac{k_{j}}{k_{j}} \right] + \frac{2}{7}\cos^{2}(\alpha_{ij}) \left[$$

Redshift Space

$$B_{g}^{(s)}(\vec{k}_{1},\vec{k}_{2}) = \sigma_{8}^{4} \left[2P_{lin}(k_{1})P_{lin}(k_{2})Z_{1}(\vec{k}_{1})Z_{1}(\vec{k}_{2})Z_{2}^{(s)}(\vec{k}_{1},\vec{k}_{2}) + cyc. \right]$$

$$Z_{1}(\vec{k}) = (b_{1} + f\mu^{2})$$

$$Z_{2}(\vec{k}_{1}, \vec{k}_{2}) = b_{1} \left[F_{2}(\vec{k}_{1}, \vec{k}_{2}) + \frac{f\mu k}{2} \left(\frac{\mu_{1}}{k_{1}} + \frac{\mu_{2}}{k_{2}} \right) \right] + f\mu^{2} G_{2}(\vec{k}_{1}, \vec{k}_{2}) + \frac{f^{3}\mu k}{2} \mu_{1} \mu_{2} \left(\frac{\mu_{2}}{k_{1}} + \frac{\mu_{1}}{k_{2}} \right) + \frac{b_{2}}{2} + \frac{2}{7} (1 - b_{1}) S_{2}(\vec{k}_{1}, \vec{k}_{2})$$

- Tree level only provides an accurate description at high redshift and large scales
- Empirical improvement of this formula though effective kernels method
 - $F_2 \rightarrow F_2^{e\!f\!f}$ HGM et al 2012 $G_2 \rightarrow G_2^{e\!f\!f}$ HGM et al. 2014
- 9 free parameters each kernel to be fitted from dark matter N-body simulations. Independent of scales/redshift

Measuring cosmological parameters in the large scale structure through RSD and AP

Hector Gil Marin

Testing for Systematics

Name	$M_{\min}^{\rm h}\left(N_p\right)$	b_1	b_2	$\bar{n}\times 10^4$
Low-bias <i>N</i> -body Mid-bias <i>N</i> -body High-bias <i>N</i> -body	$\begin{array}{c} 3.80 \ (50) \\ 5.75 \ (75) \\ 8.36 \ (110) \end{array}$	$1.75 \\ 1.90 \\ 2.07$	-0.26 0.22 0.49	$6.75 \\ 4.41 \\ 2.90$
MD-PATCHY (LOWZ) MD-PATCHY (CMASS)	-	$2.08 \\ 1.97$	$0.43 \\ 0.29$	$\begin{array}{c} 4.0\\ 4.5\end{array}$
Data (LOWZ) Data (CMASS)	-	$2.08 \\ 2.01$	$\begin{array}{c} 0.92 \\ 0.68 \end{array}$	$4.0 \\ 4.5$

- We run our cosmology data 'pipeline' on mocks & full N-body sims
- Determine our systematic budget & k-range of validity

Compression techniques for the Bispectrum

- Number of triangles (and information) grows as we reduce the binning.
- Bins highly correlated. How we deal with it? More mocks? Compression!
- For DESI / EUCLID information will need to be compressed in optimal way for maximising the outcome

 $0.03 \le k[h / Mpc] \le 0.12$

bin-size	#triangles
$\Delta k = 6k_f -$	<u>→116</u>
$\Delta k = 5 k_f -$	→195
$\Delta k = 4k_f -$	→404
$\Delta k = 2k_f -$	→2734
Gualdi et al. 2	2018 for details
arxiv:1806.028	53

Karhunen-Loeve algorithm+theoretical proposed cov.

Measuring cosmological parameters in the large scale structure through RSD and AP

Hector Gil Marin

Future analyses: DESI

Cosmology with BOSS, eBOSS & DESI BOSS eBOSS

2014-2019

2009-2014

2020-2024

2.4M QSO 1<z<2 17M ELG 1<z<2 4M LRG 0.2<z<1 10M BG z<0.2

14,000 deg2 50 [Gpc/h]3

Numbers of Spectroscopic Galaxy Surveys

Measuring cosmological parameters in the large scale structure through RSD and AP

Hector Gil Marin

Current state of the art H(z) measurement

Future analyses: DESI

DESI H(z) forecast

Future analyses: DESI

DESI fσ₈ forecast

Conclusions

- Using RSD in combination with AP effect allow us to measure H(z), $D_A(z)$ and $f\sigma_8(z)$ from 3D spectroscopic surveys
- BOSS and eBOSS have already demonstrated the power of BAO can be used to perform robust cosmological measurements
- Using 3PCF/Bispectrum allow us to shrink the statistical error-bars of cosmological parameters at a given volume (for free!)
- New approaches need to be developed to fully exploit the power of bispectrum on the next generation of spectroscopic surveys.