Better Ages Through Chemistry

s

i n

Planetary Nebula Sequence

Ma

equence

Jennifer Johnson Ohio State University

class Sequence

White Dwarf Sequence

T.Tauri Sequence

Stellar Ages are Important.....

- Ages of planetary systems
- Star formation history of the Milky Way
- Inside-out, upside-down galaxy formation
- Origin of the thick disk
- Age-metallicity relationship
- Amount of radial mixing in the disk of the Milky Way

A Simple View of the Solar Neighborhood

The Actual View of the Solar Neighborhood

APOKASC dwarf catalog – Serenelli et al, 2018

.....But Hard to Measure

Composition Matters

Open clusters to the rescue

Waid Observatory

Geller et al. 2015 (WOCS)

Open Clusters (somewhat) to the rescue

Piskunov et al. 2006

The Key Role of Turnoff Stars

Hydrogen exhaustion timescale

Mass + composition of evolved stars \rightarrow age

Ages for Luminous Red Giants

Asteroseismology

Carbon and Nitrogen Measurements

Gaia parallaxes

Gaia alone will not save us..

Red Giant Branch Models Currently Fail

Tayar et al. 2017

Possible Explanation – Mixing Length

Tayar et al. 2017

APOKASC Collaboration

Marc H. Pinsonneault, Yvonne Elsworth, Courtney Epstein, Saskia Hekker, Sz.Meszaros, William J. Chaplin, Rafael Garcia, Jon Holtzman, Savita Mathur, Ana Garcia Perez, Sarbani Basu, Leo Girardi, Victor Silva Aguirre, Matthew Shetrone, Dennis Stello, Carlos Allende Prieto1, Deokkeun An, Paul Beck, Dmitry Bizyaev, Jo Bovy, Katia Cunha, Joris De Ridder, D.A. Garcia-Hernandez, Ronald Gilliland, Fred R. Hearty, Daniel Huber, Inese Ivans, Thomas Kallinger, Steven R. Majewski, Marie Martig, Andrea Miglio, Benoit Mosser, David L. Nidever, Aldo Serenelli, Verne V. Smith, Jamie Tayar, Olga Zamora, Gail Zasowski

APOGEE

- High-resolution H-band spectroscopic survey
- Stellar parameters determined by chi² minimization to a grid of synthetic spectra
 - ~10,000 stars observed in the *Kepler* field, mostly red giants
 - First APOKASC catalog reporting Δv , v_{max} , M, R, Teff, (Pinsonneault et al. 2014)
 - 2nd catalog coming soon coming soon, including empirical calibration

Sloan Digital Sky Surveys: APOGEE

- H-band survey of Galactic populations
- 250,000 stars (80% red giants)
- R~22,500
- >15 elements including C, N, O, Na, Mg, Ca, Mn, Fe, Co, Ni
- Targeted from 2MASS
- Compliments optical surveys such as Gaia-ESO, Galah

Observing oscillation modes

- Modes excited in the convection zone propagate through the stars
- Oscillations cause the
 brightness of the star to
 change
- Low-order modes are visible with highprecision photometry

Slide from Stello, KASC 6 presentation

Physics of Key Frequencies

 $v_{\rm max} \approx \frac{M}{R^2 \sqrt{T_{\rm eff}}} \approx \frac{g}{\sqrt{T_{\rm eff}}}$ $\Delta \nu \approx \sqrt{\frac{M}{R^3}} \approx \sqrt{\frac{g}{R}} \approx \sqrt{\bar{\rho}}$

Scaling Relations $\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$ $\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\text{max}}}{\nu_{\text{max}}\odot}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff}}\odot}\right)^{1/2}.$ Red Giants are not homologous with the Sun

Towards Absolute Ages

The Kepler Field in the Galaxy

H-R Diagram in the Kepler Field

Mass-Metallicity Distribution for Secondary Red Clump

Stars in the secondary red clump have ages of ~1.5 +/- 0.5 Gyr

Not a complete MDF, but a clear spread in metallicty

Epstein, Girardi, et al, in prep

Finding a Descendent of a Blue Straggler

Tayar et al. 2015

For CoRoT data: Chiappini et al. 2015

Martig et al. 2015

K2 & Galactic Archaeology

Stellar Pops Across the Galaxy

K2 map from K2 GAP (Stello) & AIP, C4 BAM parameters

The First Dredge-Up

- Nuclear burning products in the interior will appear at the surface on the red giant branch
- This 1st Dredge-up is
 Sensitive to mass,
 composition, and any
 extra internal main
 sequence mixing

C/N as a Mass Diagnostic

Masseron et al. 2015 Martig et al. 2016 Ness et al. 2016

Age Map of Milky Way

Ness, Martig et al. 2016

Building a Galaxy

Bird et al. 2013

C/N and its discontents

Chemical evolution Extramixing

Shetrone, Tayar, et al., in prep

Extra-mixing & Chemical Evolution

Shetrone, Tayar, et al., in prep

Calibration: M 67 and NGC 188

Age-Metallicity Relation & Radial Mixing

APOKASC dwarf catalog – Serenelli et al, submitted

Wandering Stars

Favored idea to explain age-metallicity spread – radial mixing (e.g. Schoenrich & Binney 2009) Mechanism would need to operate on short timescales! *Does it also explain the ages?*

$[\alpha/Fe]$ vs. age

Haywood et al. 2013

Silva Aguirre et al. 2017 submitted

Galactic Archaeology Summary

- C/N provides good relative ages for bulk populations
 - Deviations from scaling relations for seismic calibrators
 - Extra-mixing corrections
- Inside-out/upside down Milky Way formation
- Radial mixing can qualitatively explain the old, metal-rich stars in the solar neighborhood
 - Does it work quantitatively?
 - Does it explain the young alpha-rich stars?

The Future & SDSS-V

Milky Way Mapper – Galactic Genesis

~5 million stars with H < 11 mag, G-H > 3.5 mag, S/N > 40 Figure by J. Bird

Orion

- M42 0.07 pc / spaxel
- APOGEE stars (yellow)
- Combine information from gas and stars to map the interaction between stars and ISM
- Have Teff, L, Z, [X/H], f_{uv}, (age) for each star
- Gas: temperature, density, kinematics, abundances

Images: ESO 2.2m

Milky Way Mapper – Stellar Astrophysics

AS4's all-sky multi-epoch spectroscopy is an awesome machine for stellar science. Hundreds of thousands of stars in each category:

- Synergy with asteroseismology & transit studies with TESS & PLATO
- RVs across the HR diagram for binary studies at all masses
- IR spectra for census in SF regions & tie to ISM
- Age info for evolved stars in binaries/white dwarfs/& red giants (core of GG proposal)

Figure by L. MacArthur/D. Hogg/J. Johnson

Milky Way Mapper – Binary Studies

Figure by J. Johnson

TESS & Galactic Archaeology

27 days < τ < 54 days 54 days < τ < 351 days CVZ

Luminosities from Gaia will be a vital part of understanding these data.

Image from 2MASS

Golden Age of Galactic Archaeology

Astatine Iridium!

New tools for making progress on some longstanding fundamental issues in galaxy formation

- Origin of the thick disk
- Radial mixing in the disk
 - Star formation history of Milky Way
 - Age-metallicity relation
- Timescales for chemical evolution
- What this all means for **ROCKY PLANETS**

The End

The Origin of the Solar System Elements

1 H		big k	oang f	fusion			cosr	mic ray	/ fissio	n ,	-						2 He
3 Li	4 Be	merging neutron stars?					exploding massive stars 🞑					5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 🧑					13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 T a	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La 89	Ce 90	Pr 91	Nd 92	Pm 93	Sm 94	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

Towards Absolute Ages -- theory

Numerous papers on theoretically motivated corrections: e.g. White et al. 2011, Guggenberger et al. 2017

> departure from the asymptotic regime + glitches + surface effects

departure from homology

Belkacem 2013