Searching for Low-Surface-Brightness Galaxies with the Hyper Suprime-Cam Survey

Johnny Greco Department of Astrophysical Sciences Princeton University

https://github.com/johnnygreco

Pre 1923: The Realm of the Nebulae

LIneA Webinar, 2017

Image credit: Carnegie Observatories

80 years later...

LIneA Webinar, 2017

Image credit: SDSS Team (2003), NASA, NSF, DOE

The Hidden Galaxy Population

Low-surface-brightness galaxies (LSBGs)

- Surface brightness fainter than night sky
- Span all galaxy types and environments
- Underrepresented in previous optical surveys

The Hidden Galaxy Population

LSBGs as a testing ground for LCDM...

The Latest Craze: Ultra-Diffuse Galaxies (UDGs)

Image credit: Pieter van Dokkum

The Latest Craze: Ultra-Diffuse Galaxies (UDGs)

Ultra-Diffuse Galaxies (UDGs)

M31

- UDGs have $M_{\text{stellar}} \sim 10^7 M_{\odot}$ spread over $r_{\text{eff}} \sim 1.5$ -5 kpc
- UDG-like objects known to exist for decades (e.g., Sandage & Bingelli 1984; Dalcanton et al. 1997)

M104

Image credit: Pieter van Dokkum

~1000 UDG candidates in Coma!

Coma Cluster

LIneA Webinar, 2017

van Dokkum et al. 2015, 2016; Koda et al. 2015

UDGs common in rich clusters

New UDGs also found in....

Virgo (Mihos et al. 2015)

Fornax (Munoz et al. 2015)

... and 8 low-z clusters: (van der Burg et al. 2016)

UDGs in groups and the field

New UDGs also found in....

Small groups (Merritt et al. 2016)

Need deep + wide blind search

Need deep + wide blind search

Ultra-LSB sources in SDSS

Need deep + wide blind search

A new view with the Hyper Suprime-Cam (HSC)

Ultra-LSB sources in SDSS

The Hyper Suprime-Cam Subaru Strategic Program

HSC Collaboration Meeting Kavli IPMU, Kashiwa, Japan (2016)

Image credits: NAOJ

Hyper Suprime-Cam

Typical Apparent Diameter of the Moon (0.5 degrees)

Suprime-Cam First Light Release January 1999

Suprime-Cam

Image Release September 2001

Hyper Suprime-Cam Image Release July 2013

Image credit: NAOJ

Hyper Suprime-Cam Survey

5 years, 300 Nights

	Wide	Deep	Ultra-Deep
Area	1400 deg ²	27 deg ²	3.5 deg ²
Filters	grizy	grizy+2NBs	grizy+2NBs
Depth (<i>i</i> -band)	25.9	26.8	27.4

Hyper Suprime-Cam Survey

Hyper Suprime-Cam Survey

LIneA Webinar, 2017

Figure credit: HSC Collaboration (2012)

Our search for LSBGs

- Carry out search in HSC
 Wide layer
- ~200 deg² with full
 Wider layer depth in gri

Search using HSC catalog?

Galaxy Shredding

LSBG Detection Pipeline

LSBG Detection Pipeline: Source Extraction

Original Image

1.5 arcmin

Source extraction in two steps:

- Initial image processing with LSST codebase: http://dm.lsst.org
- Final source detection with SExtractor

LSBG Detection Pipeline: Source Extraction

1.5 arcmin

Low- & high-threshold footprints

Source extraction in two steps:

- Initial image processing with LSST codebase: http://dm.lsst.org
- Final source detection with SExtractor

LSBG Detection Pipeline: Source Extraction

1.5 arcmin

Low- & high-threshold footprints

Sources on cleaned image

Source extraction in two steps:

- Initial image processing with LSST codebase: http://dm.lsst.org
- Final source detection with SExtractor

LSBG Detection Pipeline: Galaxy Modeling

Our LSBG definition:

 $\bar{\mu}_{\rm eff}(g) > 24.3 \text{ mag arcsec}^{-2}$ $r_{\rm eff} > 2.5''$

- Model LSBG candidates as singlecomponent Sersic functions
- Make selection on best-fit parameters
- Visually inspect remaining candidates
- Final sample size: 781 LSBGs

LSB False Positives: Galactic Cirrus

LIneA Webinar, 2017

LSB False Positives: Tidal Debris?

LIneA Webinar, 2017

LSB False Positives: Tidal Debris?

 $\sim 50 \text{ kpc at } z = 0.043$

LIneA Webinar, 2017

Greco et al. 2017, PASJ accepted

LSBG Sample

LSBG Sample: Parameter Distributions

Greco et al. 2017, ApJ submitted

LSBG Sample: Spatial Distribution

LSBG Sample: Spatial Distribution

Greco et al. 2017, ApJ submitted

LSBG Sample: Catalog Crossmatching

Size-Luminosity Relation

UDGs & rich globular cluster systems

Counting globular clusters with HST

Redshifts with GMOS on Gemini

Redshifts with GMOS on Gemini

Progress

Summary

Special thanks to my collaborators!

Jenny Greene, Michael Strauss, David Spergel, **Andy Goulding**, Lauren MacArthur, Robert Lupton, Alexie Leauthaud, Song Huang, and the HSC collaboration