

Measuring BAO correlations at z = 2.3 with SDSS DR12 Lyman- α forests

Julian Bautista - University of Utah

LINEA webinar - August 24th 2017

OUTLINE

Part I

- Expansion of the Universe
- Baryon Acoustic Oscillations
- The BOSS survey

Part II

- Measuring the flux correlation function
- Results on data
- Cosmological implications
- Future

Brief history of dark energy

General Relativity $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

Space-time

Contents

General Relativity $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$ Space-time Contents

The Universe is static!

Edwin Hubble

Edwin Hubble

biggest mistake of my life!

Edwin Hubble

70 years later...

... and the quest for dark energy begins!

- Expansion rate: $H(t) \equiv \frac{\dot{a}(t)}{a(t)}$

 $t \rightarrow z$ (redshift)

- Expansion rate: $H(t) \equiv \frac{a(t)}{a(t)}$ $t \to z \text{ (redshift)}$

- Expansion rate: $H(t) \equiv \frac{a(t)}{a(t)}$ $t \to z \text{ (redshift)}$

- Distances:
$$D(z) \propto c \int_0^z \frac{\mathrm{d}z}{H(z)}$$

 $H^2(z) = H_0^2 \left[\Omega_m (1+z)^3 + \Omega_\Lambda \right]$

Measuring the H(z) or D(z) at many redshifts gives us constraints on the components of the Universe

Uses ratios of D(z) assuming "constant" luminosity

12

What is this standard ruler?

Correlation function of matter overdensities: $\xi(\vec{r}) = \langle \delta(\vec{x})\delta(\vec{x}+\vec{r}) \rangle$

The origin of the standard ruler

Correlation function of matter overdensities:

Measuring BAO scale

Measuring BAO scale

Galaxies or QuasarsTrace dense regions $\delta \gg 200$

Measuring BAO scale

Galaxies or QuasarsTrace dense regions $\delta \gg 200$

Galaxies or QuasarsTrace dense regions $\delta \gg 200$

Galaxies or QuasarsTrace dense regions $\delta \gg 200$

Lyman-α Forest Small over-densities $\delta \approx 1$

Galaxies or Quasars Lyman-α Forest Small over-densities $\delta \approx 1$ Trace dense regions $\delta \gg 200$ BOSS galaxies $z \sim 0.57$ 120 × × CMASS 100-> Best-fit 80 60 × $r^2 \xi(r)$ 40 НI (Lyβ) IT (Lya) 20 Intensity $r_d \sim 150 \text{ Mpc}$ $lpha = 1.016 \pm 0.017$ $\chi^2 = 30.53/39 ext{ dof}$ -20 Limit 50 150 200 100

 $r(h^{-1} \mathrm{Mpc})$

(Anderson et al. 2012)

BAO

Baryon Acoustic Oscillations

BAO

Baryon Acoustic Oscillations

Distances

 $\Delta heta \propto rac{r_d}{D_A(z)}$

BAO

Baryon Acoustic Oscillations

Distances

 $\Delta heta \propto rac{r_d}{D_A(z)}$

Hubble's law (in the past)

$$\Delta z \propto \frac{r_d}{D_H(z)}$$
$$\left(D_H(z) = \frac{c}{H(z)}\right)$$

OUTLINE

Part I

- Expansion of the Universe
- Baryon Acoustic Oscillations
- The BOSS survey

Part II

- Measuring the flux correlation function
- Results on data
- Cosmological implications
- Future

PART II

Methods, results and cosmology

Busca et al. 2013 Slosar et al. 2013 Kirkby et al. 2013 Font-Ribera et al. 2013 Delubac, JB, et al. 2014 JB et al. 2017 Du Mas des Bourboux et al. 2017

MEASURING BAO WITH FORESTS r 2.0 2.2 2.4

Redshift 2.8 3.0 3:4

000

Nope [mm]

OCA

400

MEASURING BAO WITH FORESTS r 2.0 2.2 .4

• Quasar redshifts: visual inspection

Redshift 2.8 3.0 3.4 Redshift 2.8

906

Nope [mm]

Och

700

- Quasar redshifts: visual inspection
- Compute flux fluctuations

Redshift 2.8 3.0 3.4 Redshift 2.8

902

, Nope [mm]

450

LO

- Quasar redshifts: visual inspection
- Compute flux fluctuations

Redshift 2.8 3.0 3.4 Redshift 2.8

906-

Nope [mm]

064

 t_{00}

- Quasar redshifts: visual inspection
- Compute flux fluctuations
- Compute correlation function

Redshift 2.8 3.0 3.4 Redshift 2.8

m

 $\int O$

350

*00*č

Nope [mm]

- Quasar redshifts: visual inspection
- Compute flux fluctuations
- Compute correlation function

Redshift 2.8 3.0 3.4 Redshift 2.8

n

 $\int O$

*00*č

Nope [mm]

450

r

- Quasar redshifts: visual inspection
- Compute flux fluctuations
- Compute correlation function

Redshift 2.8 3.0 3.4 Redshift 2.8

r

356

902

Nope [mm]

450

 $\int O$

- Quasar redshifts: visual inspection
- Compute flux fluctuations
- Compute correlation function
- Measure BAO scale

Redshift 2.8 3.0 3.4 Redshift 2.8

r

35

902

Nope [mm]

150

COMPUTING FLUCTUATIONS

$$\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$$

 $\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$

 $\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$

 $\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$

 $\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$

$$\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$$

$$\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$$

 $\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$

$$\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$$

$$\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$$

$$\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$$

 $\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$

29

$$\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$$

50 x 50 bins of 4 h⁻¹ Mpc Gauge Control of 4 h⁻¹ Mpc

200 r_{\perp} [*h*⁻¹ Mpc]

$$\delta_q(\lambda) = \frac{f_q(\lambda)}{C_q(\lambda)\bar{F}(z)} - 1$$

50 x 50 bins

150

50

100

 r_{\perp} (h^{-1} Mpc)

0

-2

0

 r_{\perp} [*h*⁻¹ Mpc]

$$\hat{\xi}(r_{\perp}, r_{\parallel}) = \langle \delta_i \delta_j \rangle$$

Redshift-space distortions due to matter infall towards potential wells (Kaiser 1987, McDonald 2003)

 r_{\perp} (h^{-1} Mpc)

 r_{\perp} (h^{-1} Mpc)

 $r_{\perp} (h^{-1} \text{ Mpc})$

 $r_{\parallel} (h^{-1} \text{ Mpc})$

Baofit (Kirkby++2013, Blomqvist++2015) and github:igmhub/pylya

Baofit (Kirkby++2013, Blomqvist++2015) and github:igmhub/pylya

BAO scale $r_d \sim 150 \text{ Mpc}$ Δz Distances $\Delta heta \propto rac{r_d}{D_A(z)}$ $\Delta \theta$ $\Delta z \propto \frac{r_d}{D_H(z)}$

$$\xi_{\text{model}}(\vec{r}, \alpha_{\parallel}, \alpha_{\perp}) = \xi_{\text{cosmo}}(\vec{r}, \alpha_{\parallel}, \alpha_{\perp}) + \xi_{\text{broadband}}(\vec{r})$$

Hubble's law (in the past)

Baofit (Kirkby++2013, Blomqvist++2015) and github:igmhub/pylya

$$\xi_{\text{model}}(\vec{r}, \alpha_{\parallel}, \alpha_{\perp}) = \xi_{\text{cosmo}}(\vec{r}, \alpha_{\parallel}, \alpha_{\perp}) + \xi_{\text{broadband}}(\vec{r})$$
$$\boldsymbol{\alpha}_{\parallel} = \frac{D_{H}(\bar{z})/r_{d}}{[D_{H}(\bar{z})/r_{d}]_{\text{fid}}} \quad \text{and} \quad \boldsymbol{\alpha}_{\perp} = \frac{D_{A}(\bar{z})/r_{d}}{[D_{A}(\bar{z})/r_{d}]_{\text{fid}}}$$
$$\text{Radial BAO} \quad \text{Transverse BAO}$$

Distances

 Δz

BAO scale

 $r_d \sim 150 \text{ Mpc}$

 $\Delta \theta$

$$\Delta\theta\propto\frac{r_d}{D_A(z)}$$

Hubble's law (in the past)

$$\Delta z \propto rac{r_d}{D_H(z)}$$

Baofit (Kirkby++2013, Blomqvist++2015) and github:igmhub/pylya

 $\xi_{\text{model}}(\vec{r}, \alpha_{\parallel}, \alpha_{\perp}) = \xi_{\text{cosmo}}(\vec{r}, \alpha_{\parallel}, \alpha_{\perp}) + \xi_{\text{broadband}}(\vec{r})$ **BAO** scale $r_d \sim 150 \text{ Mpc}$ $\alpha_{\parallel} = \frac{D_H(\bar{z})/r_d}{[D_H(\bar{z})/r_d]_{\text{fd}}} \qquad \text{and} \qquad \alpha_{\perp} = \frac{D_A(\bar{z})/r_d}{[D_A(\bar{z})/r_d]_{\text{fd}}}$ Δz Radial BAO **Transverse BAO** $r^2 \xi_{
m model}$ Distances $\Delta \theta$ $\Delta \theta \propto \frac{r_d}{D_A(z)}$ Hubble's law (in the past) $\Delta z \propto \frac{r_d}{D_H(z)}$ 0 r_{\perp}

Expansion rate with BAO

Expansion rate with BAO

Expansion rate with BAO

COSMOLOGY

COSMOLOGY

ᡟ

Radiation

DO WE TRUST OUR MEASUREMENT?

LIST OF TESTS

Astrophysical systematics

- contamination by metals: Si, C
- contamination by DLAs, or BALs
- contamination by galactic absorption
- effect of UV background fluctuations
- effect of continuum fitting

Instrumental systematics

- · impact of flux calibration
- impact of sky residuals
- impact of fiber cross-talk
- impact of extraction

All tests were performed on data and mock catalogs

JB et al. 2015

JB et al. 2015

MockExpander package

• Resolution, binning

JB et al. 2015

- Resolution, binning
- High column density systems

JB et al. 2015

- Resolution, binning
- High column density systems
- Metals

JB et al. 2015

- Resolution, binning
- High column density systems
- Metals
- Continuum

JB et al. 2015

- Resolution, binning
- High column density systems
- Metals
- Continuum
- Noise

JB et al. 2015

- Resolution, binning
- High column density systems
- Metals
- Continuum
- Noise
- Sky subtraction residuals

JB et al. 2015

- Resolution, binning
- High column density systems
- Metals
- Continuum
- Noise
- Sky subtraction residuals
- Observational errors

LIST OF TESTS

Astrophysical systematics

Instrumental systematics

mock set	$\overline{\alpha_{\parallel}}$ $(\overline{\sigma_{\alpha_{\parallel}}})$	$\overline{\alpha_{\perp}}$ $(\overline{\sigma_{\alpha_{\perp}}})$
Ly α only	0.998 (0.014)	1.002 (0.020)
+continuum	1.000 (0.023)	0.993 (0.040)
+metals (Met1)	0.998 (0.025)	0.993 (0.040)
(or) +metals (Met2)	1.002 (0.023)	0.992 (0.039)
+HCDs (20)	0.995 (0.032)	0.999 (0.058)
(or) +HCDs (21)	0.995 (0.032)	0.995 (0.056)

	$\beta_{Ly\alpha}$	$b(1 + \beta)$	α_{\parallel}	α_{\perp}
Sky model noise	-0.026	-0.002	< 0.001	< 0.001
Calibration noise	+0.047	+0.002	< 0.001	+0.001
Fiber cross-talk	+0.003	< 0.001	< 0.001	< 0.001
ISM absorption	+0.003	< 0.001	< 0.001	< 0.001
Sum	+0.027	< 0.001	+0.001	< 0.001
Quadratic sum	+0.054	+0.002	< 0.001	+0.001

 α 's consistent with mock input = 1.0

No significant contribution to errors

Surprisingly very robust measurement!

eBOSS

eBOSS

The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX)

The Subaru Hyper-Suprime Camera and Prime Focus Spectrograph (PFS)

The Dark Energy Spectroscopic Instrument (DESI)

Large Synoptic Survey Telescope (LSST)

Euclid

The Wide Field Infrared Survey Telescope (WFIRST)

(Kim et al. 2013)
Conclusions

- Dark energy is a mystery and we need more data!
- BAO is a robust method to study expansion
- Lyman-alpha forests allow high redshift exploration
- With BOSS, we measure H(z=2.3) to 3%, giving independent detection of $\Omega_{\Lambda}!$
- Future surveys are coming soon!