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• Tom Loredo already spoke about the overall 
ASTRO program 

• A few weeks back Federica Bianco spoke about 
LSST TVS 

• WGII: Synoptic Time Domain Surveys
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Outline
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WG2 subgroups
1. Data Challenge
2. Designer Features
3. Scheduling Obs
4. Interpolating Lightcurves
5. Incorporating Non-Structured Ancillary Info
6. Outlier Detection
7. Domain Adaptation
8. Lightcurve Decomposition
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~25 members 
Opening Workshop 
biweekly telecons 

Follow-up meetings 
Connection to LSST “community”

Overall leaders:
Ashish Mahabal

Jogesh Babu

Interconnectivity
of the subgroups
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Intricacies of a data challenge
• SNe data challenge (Kessler et al.) 

• full light-curves 

• first six data points 

• Great3 challenge (Cosmology) 

• Kaggle (Widely popular platform) 

• Our plans: new challenge
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Transients and brokers
• Expected rate: 1-10 million 

transients per night 

• Majority will be well understood 
classes 

• Early characterization crucial to 
follow-up rare classes 

• Two-tiered challenge to ensure 
astronomers and non-astronomers 
participate 

• Challenge: Gappy, sparse, 
heteroscedastic lightcurves
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10^7 transients

10^3 rare transients
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Data challenge details
• Possible Datasets: 

• Catalina Real-Time Transient Survey 

• MACHOs survey  

• OGLE  

• Pan-STARRS 

• PTF 

• SDSS STRIPE82
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Simulations
Theory

Lead: Rafael Martinez-Galarza
Peter Freeman 

Matthew Graham 
Shashi Kanbur 

Vivek Kohar 
James Long 

Ashish Mahabal 
Wenlong Yuan 

https://community.lsst.org/t/data-challenge-to-characterize-
transient-and-variable-objects/1061/14

https://community.lsst.org/t/data-challenge-to-characterize-transient-and-variable-objects/1061/14


Ashish Mahabal

Designer features

• Supernova from just archival information 

• R Cor Bor plateaus 

• Role of ancillary data (e.g. archival radio source)
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based on peaksnormalized

SN v. non-SN
Also based on 

lightcurve decomposition

Matthew Graham 
Ashish Mahabal
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Scheduling observations

8

A possible bayesian approach
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 Basis models for lightcurves (computationally 
efficient approx. to GPs)

 Basis coefficients have different prior for each class
 Training / prior construction step: use Stan to fit 

Bayesian hierarchical model that shares information 
between lightcurves of the same class

 For a new lightcurve: get posterior draws of 
“separation” (can be chosen) between models at 
different future observation times 

Scheduling observations
Lead: David Jones
Sujit Ghosh, James Long, 
Zhenfeng Lin, Ashish Mahabal



Ashish Mahabal

Scheduling observations
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Class / Model 1: basis model with correct period  
Class / Model 2: basis model with slightly misspecified period 

Left: solid green line shows the optimal (posterior mean) time for a new observation in a one 
day interval indicated by vertical dashed lines. Red and blue curves show current posterior 
mean fits for models 1 and 2. 

Right: top shows the optimal observation time with the two model means plotted for a single 
posterior draw of the parameters. Bottom shows the corresponding posterior draw of the 
separation between the model means 

Toy Cepheid example
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Interpolating light-curves
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Fourier decomposition (Bharadwaj, 2015) 
PCA (Deb and Singh, 2010) 
Emperical mode (Wysocki et al 2016) 
Non-linear mode (Latsenko et al 2012) 
Dynamical systems theory

Lead: Shashi Kanbur
Erik Feigelson 
Vivek Kohor 

Rafael Garrido Haba 

R methods: 
Amelia, ImputePSF, mtsdi 

ARIMA autoregressive models 
Gaussian state space models

na.kalman of imputeTS (Arima 0,2,2 
Kalman filter max likelihood 

seasonal component

KIC 007609553

29.4 min cadence
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Incorporating ancillary info

• Parameters like 

• Galactic latitude (Galactic versus extra-galactic) 

• Nearest galaxy (Supernova versus non-) 

• Nearest radio source (blazar or not)
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Natural language 
Best guesses

Lead: James Lang
David Jones 

Ashish Mahabal
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Outlier detection

• The importance: new species, new 
subspecies 

• New physics
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Tests: 
Gaussianity: 
Dimensionality: 
Local Outliers  (Hierarchical): 
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Outlier detection
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hi-z qso

type-II qso

Methods: 
Clustering: objects not belonging to any cluster are outliers.  
(noise, natural distribution in the dimensions considered) 
Model-based: Separate objects by goodness-of-fit 
Mixture of Experts 

Ashish Mahabal 
Soumendra Lahiri 

Jogesh Babu
Matthew Graham,  

David Jones,  
Zhenfeng,  
Ji Meng
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Domain Adaptation to Learn Predictive 
Models Across Astronomical Surveys 
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How can we exploit information from  
multiple surveys simultaneously to obtain  
more accurate predictive models?  

How can we take a predictive model obtained 
in one survey and transform it into an accurate 
model on different surveys?  

Lead: Ricardo Vilalta
Jogesh Babu 

Ashish Mahabal 
Ji Meng
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Model Adaptation …
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Find a common subspace where source and 
target  domains overlap. Once source and target 
are mapped into a common subspace, a model 
trained on the source domain can be used on the 
target domain. 
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Lightcurve decomposition
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To characterize data with a random component, a trend or 
cyclic variability of interest 
To classify objects based on lightcurve signatures or 
parametrizations of changes in brightness (Peters et al. 
(2016), Schmidt et al. (2010), MacLeod et al. (2011))  
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This group is taking a closer look at 
CARMA (auto-correlated behavior at various 

timescales + random disturbances)
CARIMA (non-stationary process)
CARFIMA (long memory process)

Continuous time models are necessary for irregularly 
sampled data like that which will be taken by LSST

Lightcurve decomposition

time (days)

SDSS quasarLead: Jackeline Moreno
Garrido 

Sujit Ghosh 
Matthew Graham 

Shiyuan He 
David Jones 

Shashi Kanbur 
Vivek Kohar 

Soument Lahiri 
Ashish Mahabal
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Summary
• Interconnectedness of the work 

• Classification is one of the over-arching themes 

• Nature of light-curves: filling gaps, decomposing 
them, features to separate classes, subspaces to 
match cadences, determining outliers, 
incorporating ancillary information and determine 
best times to classify the sources 

• That is the grand (data-)challenge
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Informatics contacts: Tom Loredo, Chad Schafer
TVS contacts: Ashish Mahabal, Federica Bianco

aam at astro.caltech.edu

Please join the fun!

http://astro.caltech.edu

