

CLUSTER COSMOLOGY IN THE DARK ENERGY SURVEY

M. Costanzi, DES Galaxy Clusters & Weak Lensing working groups

https://zoom.us/j/596761139

Modeling of the Selection Function: Costanzi+ 18a (arXiv:1807.07072) Methodology paper - SDSS Cluster Cosmology: Costanzi+ 18b (arXiv:1810.09456) DESY1 WL mass calibration: McClintock+ 18 (arXiv:1805.00039) Modeling of Miscentering Effects: Zhang+ 19 (arXiv:1901.07119) Modeling of Membership Dilution: Varga+ 18 (arXiv:1812.05116) Prior on observable-mass relation scatter: Farahi+ 19 (arXiv:1903.08042) DES Y1 Cluster Cosmology: DES Collaboration 19, in prep.

GALAXY CLUSTERS

- Most massive bound objects in the Universe: M = 10¹³ 10¹⁵ M_☉ and R = 1 5 Mpc
- Multi-component systems: galaxies and stars (~5%), ICM (~15%), DM (~80%)

RICHNESS, LENSING EFFECTS LUMINOUS AND EXTENDED X-RAY SOURCES SUNYAEV-ZEL'DOVICH EFFECT

THE DARK ENERGY SURVEY

- DES Survey:
 - \circ ~5000 deg² of southern sky
 - \circ *g*,*r*,*i*,*z*,(Y) bands
 - 10 visits per pointing to reach *i*~24
- DES Year 1:
 - ~1500 deg² with 10σ depth *i*~22.9
 - N_{eff} ~6.3 arcmin⁻² (34M source glxs)

redMaPPer CLUSTER CATALOGS

red-sequence Matched-filter Probabilistic Percolation cluster finding algorithm (Rykoff+14):

Detect overdensities of red-sequence galaxies and assign a membership probability, p_{mem} , to each cluster member candidate

Area [deg ²]	Redshift range	# of clusters (λ>20)	σ _z /(1+z)
1470	0.2 <z<0.65< td=""><td>~6540</td><td>0.006</td></z<0.65<>	~6540	0.006

 $R < R_{\lambda}$

 z^{ob}

From McClintock+18

The abundance of galaxy clusters is sensitive to the growth rate of cosmic structures and expansion history of the Universe

- $\sigma_{_8}\text{:}$ Amplitude of the matter power spectrum
- Ω_m : Present-day total matter density

$$S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$$

Dark energy equation of state parameter Total neutrino mass Deviation from GR

. . . .

Evolution of the clusters population in 2 N-body simulations

From Borgani, Guzzo 2001

Massive neutrinos:

- Dealy the epoch of matter-radiation equality
- Suppress the growth of density fluctuation on scale smaller than the free-streaming length

Effects on the number density of halos as a function of mass

Modified gravity models, e.g. f(R):

- Give rise to accelerated expansion and enhance gravity
- Introduce screening mechanism that restores GR in high density environments

Relative effect on the Halo Mass Function compared to Λ CDM

From Hagstotz+18

• From theory to observation

For optically-selected clusters:

 λ =richness~ # member galaxies

• From theory to observation

• Combine cluster abundance and cluster mass estimates to simultaneously constrain cosmology and the richness-mass relation

WEAK LENSING MASS ESTIMATES

Gravitational lensing:

Tangential shear: the tangential alignment of background galaxies around foreground clusters due to gravitational lensing

Tangential shear ∝ Surface mass density of the cluster

WEAK LENSING MASS ESTIMATES

Mass estimates in DES Y1:

- Stack clusters in bin of richness and redshift
- Measure the mean tangential shear of background galaxies in radial bin around the cluster center
- Compute the (excess) surface mass density profile $\Delta \Sigma$
- Fit for the mean mass of the λ/z bin

Surface mass density profile from stacked lensing analysis

WL MASS ESTIMATES MODELING AND SYSTEMATICS

Source of systematicY1 Amplitude UncertaintyShear measurement1.7%Photometric redshifts2.6%Modeling systematics0.73%Membership dilution + miscentering0.78% (Varga+19, Zhang+19)

From McClintock+18 (WL mass calibration of redMaPPer DESY1)

Modeling of the cosmological dependence of the WL mass estimates (<1% uncertainty)

- Miscentered
- Weighted centered & miscentered
 - Reference model

WL MASS ESTIMATES: SELECTION EFFECT SYSTEMATICS

The cluster finder might select preferentially clusters with some properties which correlate with WL signal (e.g. elongated along the l.o.s.)

Calibrate selection effects with simulations:

- Run redMaPPer on simulations
- Select clusters in λ/z bins
- Select clusters with the same mass/z distribution as the λ/z selected sample
- Compare the stacked Σ(R) profiles of the two samples

Selection effects systematics on WL profile

Wu et al. (in prep.)

WL MASS ESTIMATES: SELECTION EFFECT SYSTEMATICS

Selection effect bias:

- Mostly explained by projection and triaxility effects
- Lowers mass estimates by ~20%-30% in all richness and redshift bins
- Increases the error on WL mass estimates by a factor of 2 (main source of uncertainty for Y1!)

Selection effects systematics on WL profile

Wu et al. (in prep.)

• Bayesian approach

Likelihood model:

$$\mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta}) \propto \frac{\exp\left[-\frac{1}{2}\left(\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{\theta})\right)^{T}\boldsymbol{C}^{-1}\left(\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{\theta})\right)\right]}{\sqrt{(2\pi)^{M}det(C)}}$$

- *d*: data {NC(λ^{ob} , z^{ob}), M_{WL}(λ^{ob} , z^{ob})}
- $m(\vartheta)$: expectation values for NC(λ^{ob}, z^{ob}), $M_{WI}(\lambda^{ob}, z^{ob})$ as a function of the parameters ϑ
- \circ C: covariance matrix (C_{NC}, C_{WL})

LIKELIHOOD MODELING: <*N*

• Expectation value NC (Forward modeling):

$$\langle N(\Delta\lambda_{i}^{\text{ob}}, \Delta z_{j}^{\text{ob}}) \rangle = \int_{0}^{\infty} dz^{\text{true}} \Delta\Omega_{\text{mask}}(z^{\text{true}}) \frac{dV}{dz^{\text{true}}d\Omega} \langle n(\Delta\lambda_{i}^{\text{ob}}, z^{\text{true}}) \rangle$$
Photo-z error
$$\int_{\Delta z_{j}^{\text{ob}}} dz^{\text{ob}} P(z^{\text{ob}}|z^{\text{true}}).$$

$$\langle n(\Delta \lambda_i^{\text{ob}}, z^{\text{true}}) \rangle = \int_0^\infty dM n(M, z^{\text{true}}) \int_{\Delta \lambda_i^{\text{ob}}} d\lambda^{\text{ob}} P(\lambda^{\text{ob}} | M, z^{\text{true}})$$

Observed Richness-mass relation (a.k.a selection function)

EFFECTIVE SURVEY AREA and HMF / PHOTO-Z UNCERTAINTY

MODELING OBSERVABLE-MASS RELATION

• Observed richness-mass relation:

 $\lambda^{\rm ob} = \lambda^{\rm true}(M,z) + \Delta \lambda (\lambda^{\rm true},z)$

P($\lambda^{ob}|M,z$):= Probability to observe a cluster of mass "M" and redshift "z" with richness " λ^{ob} "

MODELING P($\lambda^{true}|M,z$)

 λ^{true} : cluster richness in absence of errors introduced by the cluster finder (e.g. error in the background subtraction, projection effects)

HOD-like Model:

$$<\lambda^{tr}(M) > = \Theta(M-M_{min}) [1 + <\lambda^{sat}(M) >]$$
$$<\lambda^{sat}(M) > = [(M-M_{min})/(M_1-M_{min})]^{\alpha}$$

- M_{min}: Minimum mass to form a CG
- M₁: Characteristic mass to acquire 1 Sat. Glx.
- α : Slope

 $\lambda^{\text{sat}}(M) = \Delta^{\text{Pois}} + \Lambda^{\text{Gauss}}$

 $PDF(\Delta^{Pois}) = Poisson(mean = <\lambda^{sat}(M) >)$ $PDF(\Delta^{Gauss}) = Normal(mean=0,std=<\lambda^{sat}(M) > \sigma_{intr})$

 $P(\lambda^{true}|M,z)$ = Poisson*Normal \simeq Skew-Normal distribution

MODELING OBSERVATIONAL NOISE

 $\lambda^{ob} = \lambda^{true}(M) + \Delta \lambda^{obs-noise}$

- Cluster members (λ^{true})
- Main sources of scatter in richness estimates:
 - Uncertainties in the background subtraction
 - Projection effects
 - Percolation (loss of member galaxies due to projection effects)

MODELING OBSERVATIONAL NOISE

 $\lambda^{ob} = \lambda^{true}(M) + \Delta \lambda^{obs-noise}$

Richness-mass relation with and without obs. noise

MODELING OBSERVATIONAL NOISE

- From DATA, we can determine:
 - How background sources/photo-z noise contaminate λ^{true}
 - The magnitude of projection effects for two clusters aligned along the same line of sight

- From SIMULATIONS, we can determine:
 - How correlated structures (i.e. clusters in projection) contaminate λ^{true}

From Background contamination \rightarrow Gaussian kernel From projection effects \rightarrow high richness tail From percolation/masking effects \rightarrow low richness tail

Scatter between true and observed richness

Dash-dotted line: Neglecting the scatter due to correlated structures

MISCENTERING CORRECTION NUMBER COUNTS

Miscenterd clusters tend to have low (observed) richness:

We correct the NC data for miscentering effect:

 $NC^{W \setminus o Misc} = NC^{Obs} \gamma^{cen} (\simeq 1.03 \pm 0.01)$

 γ^{cen} derived by modeling (Zhang+19):

Richness perturbation as a function of the offset distribution

- C^{NC} = C^{Poisson} + C^{SampVar} + C^{Misc}
 - C^{Poisson}: Contribution due to the Poisson fluctuations in the number of halos at given mass in the survey volume
 - C^{SampVar} : Sample variance contribution due to the fluctuation of the density field in the survey volume
 - C^{Misc} : Contribution due to uncertainty in the miscentering corrections

Covariance matrix validated using mock catalog

LIKELIHOOD MODELING: (M)

• Expectation value for the mean mass:

$$\log\langle \bar{M}(\Delta \lambda_{i}^{ob}, \Delta z_{j}^{ob}) \rangle = \log \frac{\langle M^{tot}(\Delta \lambda_{i}^{ob}, \Delta z_{j}^{ob}) \rangle}{\langle N(\Delta \lambda_{i}^{ob}, \Delta z_{j}^{ob}) \psi_{src}(z^{ob}) \rangle}$$

$$\langle M^{tot}(\Delta \lambda_{i}^{ob}, \Delta z_{j}^{ob}) \rangle = \int_{0}^{\infty} dz^{true} \Omega_{mask} \frac{dV}{dz^{true} d\Omega}(z^{true})$$

$$\langle nM(\Delta \lambda_{i}^{ob}, z^{true}) \rangle \int_{\Delta z_{j}^{ob}} dz^{ob} P(z^{ob} | z^{true}) \psi_{src}(z^{ob}) \rangle$$
Lensing weight
$$\int_{0.1}^{0.2} \int_{0.1}^{0.2} \int_{0.1}^{0.$$

$$\langle nM(\Delta\lambda_i^{\rm ob}, z^{\rm true})\rangle = \int_0^\infty dM Mn(M, z^{\rm true}) \int_{\Delta\lambda_i^{\rm ob}} d\lambda^{\rm ob} P(\lambda^{\rm ob}|M, z^{\rm true})$$

COVARIANCE MATRIX FOR M_{WL}

TESTING THE PIPELINE WITH redMaPPer SDSS

Catalog	Redshift range	Area [deg ²]	# of clusters (λ ^{ob} >20)	WL analysis	$\sigma_{_{ m Mass}}$
SDSS DR8	0.1 <z<0.30< td=""><td>10.000</td><td>~6964</td><td>Simet+17</td><td>13%</td></z<0.30<>	10.000	~6964	Simet+17	13%

GOODNESS OF FIT & ROBUSTNESS OF THE ANALYSIS

Robustness to model assumptions and systematics

- Gray band: Reference Model
- RND-PNT-INJ: No contribution from correlated structures
- $\sigma_{\rm intr}(M)$: Mass dependent scatter between $\lambda^{
 m true}$ -M
- $P(\lambda^{true}|M)$ =Lognorm. & $<\lambda^{true}|M>$ = Pow. Law
- $P(\lambda^{ob}|M)=Lognorm. \& <\lambda^{ob}|M>=Pow. Law \& \sigma_{intr}(M)$

RICHNESS-MASS RELATION FROM redMaPPer SDSS

Mass distribution inside the λ bins

COSMOLOGICAL CONSTRAINTS DESY1 ACDM+v model

PREL
$$\Lambda$$
 CDM+ ν
 $\Delta S_8^{DESY1} \approx 0.9 \Delta S_8^{SDSS}$
 $\Delta S_8^{DESY1} \approx 0.8 \Delta S_8^{SPT-SZ}$
 $\Delta S_8^{DESY1} \approx 1.7 \Delta S_8^{DES3x2}$
 $\Delta S_8^{DESY1} \approx 1.8 \Delta S_8^{Planck18}$

→ Selection effect uncertainty accounts for 16% of the total error budget on S₈

DES Collaboration 19, in prep.

BLIA

CONSISTENCY DES Y1 NC & M_{WL} DATA

Assume DESY1 3x2pt cosmology fit for the λ -M relation using only NC or M_{WL} data

Internal tension between Y1 NC and M_{WL} data (@ DES 3x2pt cosmology) implies that either:

- The cosmological model is wrong (Λ CDM+ ν)
- There are unmodeled systematics, either in the NC or M_{WL} data (or both)

DES Collaboration 19, in prep.

CONSISTENCY DES Y1 NC & M_{WL} DATA

Assume DESY1 3x2pt cosmology fit for the λ -M relation using only NC or M_{WL} data

Internal tension between Y1 NC and M_{WL} data (@ DES 3x2pt cosmology) implies that either:

- The cosmological model is wrong (Λ CDM+ ν)
- There are unmodeled systematics, either in the NC or M_{WL} data (or both)

- If M_{WL} estimates are correct: redMaPPer should be incomplete at ~50% at low λ and ~25% at high λ
- If NC data are correct: M_{WL} should be biased low by ~30% at low λ and ~10% at high λ

DES Collaboration 19, in prep.

NOT VIABLE SOLUTIONS . . .

- Shear and photo-z systematics would affect the 3x2pt results even more strongly
- Miscentering model validated with 2 x-ray samples
- Cross-match with SZ (Planck, SPT) and X-ray (XCS) samples exclude large incompleteness at λ≥40
- Cross-match with Swift X-ray sample exclude large contamination at $\lambda \approx 30$
- NC modeling/systematics does not have large impact on the posteriors
- Baryonic effects cannot account for 50% mass depletion in ~10¹⁴
 M_o halos (e.g. Cui+14, Velliscig+14,Henson+17,Springel+17,)
- Too aggressive percolation scheme: decreasing the redMaPPer percolation radius by 20% change the NC by less than 1%

DES Collaboration 19, in prep.

POSSIBLE SOLUTIONS

 Selection effects bias might be overestimated at λ≥30, but cannot explain correction needed at lowest λ-bin

DES Collaboration 19, in prep.

- Unmodeled systematic at λ <30 (contamination?)

POSSIBLE SOLUTIONS

→ Dropping the lowest λ-bins remove the tension with DES3x2pt but the error on S₈ increase by 18%

- Unmodeled systematic at λ <30 (contamination?)

SUMMARY

- Cluster abundance can be a powerful cosmological probe, provided we are able to precisely characterise the relation between observable and underlying halo mass.
- DES Y1 cluster catalog can provide cosmological constraints which are independent and competitive with those obtained from other probes but . . .
- Numerical simulations suggest that selection effects severely impact the M_{wi} of redMaPPer clusters
 - Mass lowered by ~20% compared to previous estimates
 - Currently represent the main source of systematic uncertainty (~50% of the M_{wi} error budget)
- Internal tension between NC and M_{w1} pointed out unmodeled systematics (likely) in M_{w1} data, which:
 - has to be richness dependent
 - has to dilute the WL signal for λ <30
- Removing λ <30 data greatly reduce the tension, but at the expense of looser constraints

OUTLOOK FOR DES Y3 CLUSTER COSMOLOGY

- redMaPPer DES Y3: 4600 deg² up to z=0.7 \rightarrow ~3 times more clusters than redMaPPer DES Y1 !
- End-to-end simulations needed to calibrate selection effects and validate the modeling.
 Main limitations: galaxy color and clustering model, resolution limit for shear measurements.
 Hydro sims to calibrate bias in WL estimates
- Validation of selection effects with external data (especially at low λ):
 - Complete samples of spectroscopic data to validate projection effects
 - $\circ~$ X-ray follow-up of complete samples to model miscentering and contamination and constrain the λ -M relation scatter
 - Cross-match with SZ and X-ray data to assess completeness (@ medium/high λ ; SPT-3G and eROSITA might help also at low λ), test selection effects on WL signal (e.g. comparing WL signal of SZ and X-ray selected samples to redMaPPer)
- "Full" forward modeling of NC and WL signal (rather than passing through the mass calibration) to ensure consistency between the likelihoods and correctly account for cross correlations