Laboratório Interinstitucional de e-Astronomia (LineA)

Constructing a pipeline to constrain cosmology with galaxy clusters

LineA Webinar

Michel Aguena da Silva

September 15, 2017

Introduction Halo Abundance Formalism Observations of Galaxy Clusters Statistical Methods Observational Effects Simulation Results Science Portal Conclusions

Content

Introduction Pipeline Cosmology Galaxy Clusters

- Halo Abundance Formalism
- Observations of Galaxy Clusters
- Statistical Methods
- **Observational Effects**
- Simulation Results
- Science Portal
- Conclusions

- The study of cosmology has experienced a rapid progress in the last few decades.
- Thanks to surveys such as WMAP (Hinshaw et al., 2013) & PLANCK (Planck Collaboration et al., 2016), the energy content of the Universe at the present epoch has been well characterized as:
 - dark energy (~ 70%)
 - ▶ dark matter (~ 25%)
 - ▶ baryonic matter (~ 5%)
- The modern approach relies on the use of large surveys using statistical quantities.
- Galaxy clusters are the largest structures in the Universe. The abundance is extremely sensitive to expansion and to growth of perturbations.

Einstein Equation

$$G_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

FRW Metric

$$ds^{2} = dt^{2} - a^{2}(t) \left[d\chi^{2} + f^{2}(\chi) d\alpha^{2} \right]$$

Friedmann's equations

$$\begin{array}{rcl} H^2(a) & = & \displaystyle \frac{8\pi G}{3}\bar{\rho}(a) \\ & \displaystyle \frac{\ddot{a}}{a} & = & \displaystyle -\frac{4\pi G}{3}\Big[\bar{\rho}(a)+3\bar{P}(a)\Big] \end{array}$$

Hubble Factor

$$H(z) = H_0 \sqrt{\Omega_{\Lambda} + \Omega_k (1+z)^2 + \Omega_m (1+z)^3 + \Omega_r (1+z)^4}$$

- Dark Matter Halos
- Galaxy Agglomeration
- Several Observational probes (Optical, X-Ray, SZ)

Content

Introduction

Halo Abundance Formalism Mass Functions

Observations of Galaxy Clusters

Statistical Methods

Observational Effects

Simulation Results

Science Portal

Conclusions

Halo Abundance Formalism Halo Mass-function

Fraction of Matter in Halos

$$F(M) = \frac{1}{\sqrt{2\pi}\sigma(M)} \int_{\delta_c}^{\infty} d\delta \exp\left[-\frac{\delta^2}{2\sigma^2(M)}\right] = \frac{1}{2} \operatorname{erfc}\left[\frac{\delta_c^2}{\sqrt{2}\sigma(M)}\right]$$

Press and Schechter (1974)

The differential comoving mean halo number density

$$\frac{d\bar{n}}{d\ln M} = -\frac{\bar{\rho}_m}{M} \frac{dF}{d\ln M} = \frac{\bar{\rho}_m}{M} \frac{d\ln\sigma^{-1}}{d\ln M} \sqrt{\frac{2}{\pi}} \frac{\delta_c}{\sigma} \exp\left[-\frac{\delta_c^2}{2\sigma^2}\right]$$
$$\frac{d\bar{n}(z,M)}{d\ln M} = \frac{\bar{\rho}_m}{M} \frac{d\ln\sigma^{-1}}{d\ln M} f(\sigma)$$

Halo Abundance Formalism

Mass-functions:

- Press and Schechter (1974) (Sphericall)
- Sheth et al. (2001) (Ellipsoidal)
- Jenkins et al. (2001) (Simulation)
- Tinker et al. (2008) (Simulation)

Introduction

Halo Abundance Formalism

Observations of Galaxy Clusters Object Finder Observational Effects

Statistical Methods

Observational Effects

Simulation Results

Science Portal

Conclusions

Observations of Galaxy Clusters

Techniques for Detecting Clusters

- X ray Observations (Evrard et al., 1996; Vikhlinin et al., 2006; Clerc et al., 2016)
- Sunyaev-Zel'dovich Effect (Carlstrom et al., 2002)
- Cluster Lensing (Dietrich and Hartlap, 2010; Marian et al., 2012; Kacprzak et al., 2016; Peel et al., 2017)
- Optical Clusters

Observational Effects

- Mass-Observable Relation (Lima and Hu, 2007)
- Completeness and Purity (Aguena and Lima, 2016)

$$\frac{d\bar{n}}{d\ln X}\left(\Theta_{cl}\right) = \int dV_{\Theta_{h}} \frac{d\bar{n}}{d\ln M}\left(\Theta_{h}\right) W_{[cl,h]}$$

Observations of Galaxy Clusters

- Halo Finders
- Cluster Finders

Approaches of Finders

- Friends of Friends
- Spherical Overdensity

Optical Cluster Finders

- MaxBCG
- Farrens et al. (2011)
- VT3D (Abdalla et al. in dev.)

- ▶ redMaPPer
- ► VT
- ▶ WaZp

Observations of Galaxy Clusters

Photometric Redshifts

$$\mathcal{P}(z^{\mathrm{phot}}) = \int_0^\infty dz \ \mathcal{P}(z) \mathcal{P}(z^{\mathrm{phot}}|z)$$

Mass-Observable Relation

$$rac{dar{n}}{dM^{
m obs}} = \int_0^\infty dM \; rac{dar{n}}{dM} P(M^{
m obs}|M)$$

Selection Function

Completeness c(M, z) and Purity $p(M^{obs}, z^{phot})$

Corrected Prediction

$$\bar{m}_{\alpha,i} \equiv \Delta \Omega \int_{z_i^{\text{phot}}}^{z_{i+1}^{\text{phot}}} dz^{\text{phot}} \int dz \frac{D_A(z)^2}{H(z)} P(z^{\text{phot}}|z)$$
$$\int_{M_{\alpha}^{\text{obs}}}^{M_{\alpha+1}^{\text{obs}}} dM^{\text{obs}} \int \frac{dM}{M} \frac{d\bar{n}}{d\ln M} P(M^{\text{obs}}|M) \frac{c(M,z)}{p(M^{\text{obs}},z^{\text{phot}})}$$

Introduction

Halo Abundance Formalism

Observations of Galaxy Clusters

Statistical Methods Likelihood Fisher Matrix MCMC sampling

Observational Effects

Simulation Results

Science Portal

Conclusions

Statistical Methods

Posterior

$$\mathcal{P}(\Theta|\boldsymbol{O}) \propto \mathcal{L}(\boldsymbol{O}|\Theta) \; \Pi(\Theta)$$

Gaussian Likelihood

$$\mathcal{L} = rac{1}{\sqrt{2\pi \det{(m{\mathcal{C}})}}} \exp{\left[\sum_{ij} rac{(N_i - ar{m}_i) \ C_{ij}^{-1} \ (N_j - ar{m}_j)}{2}
ight]}$$

Poissonian Likelihood

$$\mathcal{L} = \sum_{i} \frac{N_i! \bar{m}_i^{N_i}}{\bar{m}_i}$$

Statistical Methods Likelihood - Fixing Parameter

Statistical Methods Likelihood - Marginalizing over Parameters

Statistical Methods Fisher Matrix

- Assumes Gaussian distribution of the parameters
- Produces Forecasts
- Much Faster $\mathcal{O}(N_{pars})$ than sampling techniques $\mathcal{O}(10^4)$

$$F_{\alpha\beta} = -\left\langle \frac{\partial^2 \ln \mathcal{L}(\mathbf{\Theta})}{\partial \Theta_{\alpha} \partial \Theta_{\beta}} \right\rangle$$

Likelihoods

$$F_{\alpha\beta} = \bar{\boldsymbol{m}}_{,\alpha} \boldsymbol{S}^{-1} \bar{\boldsymbol{m}}_{,\beta}{}^{T} + \frac{1}{2} \operatorname{Tr} \left[\boldsymbol{S}^{-1} \boldsymbol{S}_{,\alpha} \boldsymbol{S}^{-1} \boldsymbol{S}_{,\beta} \right]$$
$$F_{\alpha\beta} = \bar{\boldsymbol{m}}_{,\alpha} \boldsymbol{M}^{-1} \bar{\boldsymbol{m}}_{,\beta}{}^{T}$$
$$F_{\alpha\beta} = \bar{\boldsymbol{m}}_{,\alpha} \boldsymbol{C}^{-1} \bar{\boldsymbol{m}}_{,\beta}{}^{T} + \frac{1}{2} \operatorname{Tr} \left[\boldsymbol{C}^{-1} \boldsymbol{S}_{,\alpha} \boldsymbol{C}^{-1} \boldsymbol{S}_{,\beta} \right]$$

Statistical Methods

- Monte Carlo Markov Chain
- Sampling from probability distributions
- Much Faster $\mathcal{O}(10^4)$ than grid $\mathcal{O}(20^{N_{pars}})$
- Does not assume Gaussianity as FM

1. From a point Θ in parameter space, propose a random step Θ_s

- (a) If $\mathcal{P}(\Theta_s) > \mathcal{P}(\Theta)$: take the step $(\Theta \to \Theta_s)$
- (b) Else: Génerate a random number $R \in [0:1]$
 - i. If the ratio $\mathcal{P}(\Theta_s)/\mathcal{P}(\Theta) > R$: take the step $(\Theta \to \Theta_s)$
 - ii. Else: Remain at the original point Θ
- 2. Repeat step 1 until the distribution of the parameters converge
- Usual formulation is not parallelizable
- Parallel implementation: emcee (Foreman-Mackey et al., 2013)

Introduction

- Halo Abundance Formalism
- Observations of Galaxy Clusters
- Statistical Methods

Observational Effects

- Optical Effects on Cluster Dark Energy Constraints
- Simulation Results
- Science Portal
- Conclusions

How is the cluster cosmology affected by the optical effects?

Aguena and Lima (2016)

Survey

- ► flat wCDM with Planck 2015 cosmology $(h^2 \Omega_m, h^2 \Omega_b, w, A_s, n_s, \Omega_{DE})$
- priors of 1% on $(h^2\Omega_m, h^2\Omega_b, A_s, n_s)$
- ▶ area of 5000 deg², covariance within 500 cells of 10 deg²
- ▶ 0.1 ≤ z ≤ 1.0
- ▶ 7 Mass bins: $M_{th}^{\text{obs}} = 10^{13.8} M_{\odot}/h$, $\Delta \log[M^{\text{obs}}/(M_{\odot}h^{-1})] = 0.2$
- Mass-Observable distribution Gaussian in log space:

$$P(M^{\rm obs}|M) = \frac{1}{\sqrt{2\pi\sigma_{\ln M^{\rm obs}}^2(M)}} \exp\left[\frac{\left(\ln M^{\rm obs} - \ln M - \ln M_{bias}^{\rm obs}(M)\right)^2}{2\sigma_{\ln M^{\rm obs}}^2(M)}\right]$$

Mass-Observable

$$\ln M_{bias}^{\rm obs}(z) = A_b + n_b \ln(1+z)$$

$$\frac{\sigma_{\ln M^{\rm obs}}^2(z,M)}{0.2^2} = 1 + B_0 + B_z(1+z) + B_M\left(\frac{\ln M_s}{\ln M}\right)$$

 $^{*}M_{s} = 10^{14.2}M_{\odot}/h$

Completeness and Purity

$$egin{array}{rcl} c(M,z) &=& rac{[M/M_c(z)]^{n_c}}{[M/M_c(z)]^{n_c}+1}, \ p(M^{
m obs},z) &=& rac{[M^{
m obs}/M_p^{
m obs}(z)]^{n_p}}{[M^{
m obs}/M_p^{
m obs}(z)]^{n_p}+1} \end{array}$$

Possibilities of Completeness and Purity

case (1):
$$n_c = 3$$
, $n_p = 1$
case (2): $n_c = 1$, $n_p = 3$

case (0):
$$c(M) = 1$$
 , $p(M^{obs}) = 1$

Finding Bias Limit

Bias inside the constraint:

$$b(\Theta_{\alpha}) \leq \gamma \left(F^{-1}\right)_{\alpha\alpha}^{1/2}$$

where $\gamma = 1, 2, 3$ indicate biased predictions inside the 68, 95, 99% confidence levels.

Improvements by including CP and Lowering M_{th}

Content

26

Introduction

- Halo Abundance Formalism
- Observations of Galaxy Clusters
- Statistical Methods
- **Observational Effects**
- Simulation Results BCC Dark Matter Halos WaZp clusters in BCC
- Science Portal
- Conclusions

Halo Cosmology

Simulation Results BCC Dark Matter Halos

Simulation Specifications

- Aardvark v1.0 catalogs of the Blind Cosmology Challenge (BCC) DES
- ► DM simulation (~ 10,313 deg², 0 < z < 2)</p>
- DM halos (Behroozi et al., 2013, 2012) and galaxies
- Complete above $\sim 4.5 \times 10^{13} M_{\odot} h^{-1}$ ($\sim 5 \times 10^{12} M_{\odot} h^{-1}$)
- \blacktriangleright \sim 30 million halos

Theoretical Prediction Comparison

- 5 mass bins
- 20 redshift bins
- Survey was sub-divided into:
 - 12 pixels (859 deg²)
 - 48 pixels (214 deg²)
 - 768 pixels (13 deg²)
 - 49152 pixels (0.21 deg²)

Testing Theoretical Abundance Prediction

Testing Theoretical Abundance Prediction

Testing Theoretical Covariance Prediction

Simulation Results BCC Dark Matter Halos

Constraining Cosmology

- DM Halos
- $M_{th} = 10^{13.8} M_{\odot} h^{-1}$ (5 bins)
- ▶ 0 < z < 2 (20 bins)</p>
- Tinker MF
- 214 deg²
- $(h, n_s, \Omega_b) =$ (0.72, 0.96, 0.042)

Simulation Results BCC Dark Matter Halos

Best fit

- DM Halos
- $M_{th} = 10^{13.8} M_{\odot} h^{-1}$ (5 bins)
- ▶ 0 < z < 2 (20 bins)</p>
- Tinker MF
- 214 deg²

Content

34

Introduction

- Halo Abundance Formalism
- Observations of Galaxy Clusters
- Statistical Methods
- **Observational Effects**
- Simulation Results BCC Dark Matter Halos WaZp clusters in BCC
- Science Portal
- Conclusions

35

Cluster Cosmology

WaZp clusters in BCC

35

WaZp

- ▶ Wavelet z Photometric (WaZp) cluster finder (Dietrich et al., 2014)
- z^{phot} slices with overlaps
- Density in each slice is computed via wavelet transformation
- Cylinders across slices are constructed

WaZp clusters in BCC

- ▶ Reduced Area (~ 220 deg²), 0.1 < z < 1.0</p>
- 45,677 Halos with $M > 10^{13} M_{\odot} h^{-1}$
- ▶ 39,861 Clusters with *N* > 3

Proximity Match

Requirements:

$$\begin{cases} |z_{halo} - z_{cluster}| & \leq \sigma_z (1 + z) * \\ \Delta \theta & \leq N \theta_R \end{cases}$$

* Ilbert et al. (2006); Mazure et al. (2007); Arnouts et al. (2007); Ilbert et al. (2009)

WaZp clusters in BCC

Angular Residuals

$$\Delta heta \leq N heta_R = 2N rcsin \left(rac{R}{2D(z_m)}
ight)$$

Mass/Richness Bins

WaZp clusters in BCC

Angular Residuals

$$\Delta heta \leq N heta_R = 2N rcsin \left(rac{R}{2D(z_m)}
ight)$$

Redshift Bins

40

Michel Aguena da Silva | LineA Webinar

Simulation Results WaZp clusters in BCC

Completeness and Purity - Regions in the Sky

Completeness

- No significant directional effects
- Small edge effects

Purity

WaZp clusters in BCC

WaZp clusters in BCC

Redshift Relation

- Scatter is very small
- Test showed including P(z^{obs}|z) had insignificant effect
- P(z^{obs}|z) will not be considered

WaZp clusters in BCC

Mass Richness Relation

$$\log\left[\frac{M^{\rm obs}(M^{\rm cl},z)}{M_{\odot}h^{-1}}\right] = A(z) \log\left[M^{\rm cl}\right] + B(z)$$

WaZp clusters in BCC

$$\sigma_{\ln M^{cl}}(M,z) = \frac{\sigma_0(z)}{1 + \left(\frac{M}{M_{\sigma}(z)}\right)^{n_{\sigma}(z)}}$$

$$\sigma_0(z) = \sigma_{00} + \sigma_{01}(1+z)
\log M_{\sigma}(z) = \log M_{\sigma0} + \log M_{\sigma1}(1+z)
n_{\sigma}(z) = n_{\sigma0} + n_{\sigma1}(1+z)$$

WaZp clusters in BCC

Theoretical Prediction

$$\begin{split} \bar{m}_{\alpha,i} &\equiv \Delta \Omega \int_{z_i}^{z_{i+1}} dz \frac{D_A(z)^2}{H(z)} \int_{M_\alpha^{\rm obs}}^{M_{\alpha+1}^{\rm obs}} dM^{\rm obs} \\ &\int \frac{dM}{M} \frac{d\bar{n}}{d\ln M} P(M^{\rm obs}|M) \frac{c(M,z)}{p(M^{\rm obs},z^{\rm phot})} \end{split}$$

. .

46

Theoretical Prediction

Theoretical Prediction

WaZp clusters in BCC

Theoretical Prediction

Introduction

- Halo Abundance Formalism
- **Observations of Galaxy Clusters**
- Statistical Methods
- **Observational Effects**
- Simulation Results
- Science Portal
- Conclusions

- There are many additional issues for galaxy cluster detection
- Collaboration from researchers of different institutes/locations

Pipelines

🕗 Dashboard My Workspace	Pipelines To	ols Data S	erver	Documentation	Help	
	Data Installatio	n	•			
	Data Preparatio	in .	۰E			
DES Science Portal: Wo	Science-Ready	Catalogs	۰ŀ.			
The Science Portal has two instances:	Science Analys	is	•			
Workflows: hosts workflows for Data Server, provide access to	Parameter Esti	mation	• •	reation of Value-Adde	ed Catalog	s (VACs) and for Science Analysis.
The system is designed to be self-evid	Utilities		• 0	Catalog Comparison		
The Science Portal is a facility develop	Special Sample	15		Diuster-Cluster Matchi	ing	the helpdesk@linea.opv.br
	Examples		+ 0	Cluster-Halo Matching		one insportant statistical generation
			-	Concatenate Fields		
			t	Download Tool		
				Download Tool		
				Product Register		
				Density Systematic Re	elation	
			F (Foreground mask crea (Individual)	ator	

Product Log - Matching

	Utilities Cluster-Cluster Mai Process ID: 1874	tching		
Process Summary Results Comments				
Summary Properties Completeness and Puri	ty Centering and Redshift Most Massive Matches			
Info Catalogs Distribution Matched (Two Way	y) Distribution Matched (Including Multiple) Distribution Unmatched (Two Way	/) Distribution Unmatched (Inc	cluding Multiple) Distribution	Products
Quick Navigation	t	Matching		?
Matching	Component Version			V02 19 00
External Footprints	Matching Code Version			2.10.0
Multiplicity Most massive	Main Info	Galaxy Clusters 3		Galaxy Clusters 18
	Index Label	[1]		[2]
	Total Number of Objects Used	81805		85955
	Match (including Multiple)	48557		
	Two Way Match	45194		45194
	Specific Matching Types		Galaxy Clusters 3	Galaxy Clusters 18
	Match (Galaxy Clusters 18 -> Galaxy Clusters 3)		46090	46090
	Match (Galaxy Clusters 18 -> Galaxy Clusters 3)(Including Multi	ple)	52905	48050
	Match (Galaxy Clusters 3 -> Galaxy Clusters 18)		46024	46024
	Match (Galaxy Clusters 3 -> Galaxy Clusters 18)(Including Multi	ple)	52063	47992
-	t	Footprints		
	Footprint Info	Galaxy Cluster	rs 3	Galaxy Clusters 18
	Original Number of Objects in Each Catalog	140899		232400
	Objects Cropped by limits	26484		128977
	Objects Cropped by Galaxy Clusters 18 Footprint	32596		0
	Objects Cropped by Galaxy Clusters 3 Footprint	14		17468
	Footprint NSIDE	512 (~ 6.9 arcmin) - External Used	[4096 (~ 51.5 arcsec)]	512 (~ 6.9 arcmin)
	Epotprint area	938.58 deg2 - External Used	[1469.16 deg2]	951.16 deo2

Product Log - Matching

Activities 🕒 Google Chrome 🗸	Qui 12:14• pt - ج مل الله - Process ID: 1874 - Google Chrome
des-portal.linea.gov.br/VP/getViewProcessCon?process_id=1874	
	Utilities Cluster-Cluster Matching
	Process ID: 1874
Process Summary Results Comments	
Summary Properties Completeness and Purity Centering and Redshift	Most Massive Matches
Redshift Centering	
Quick Navigation Galaxy Cluster	s3 [1]
Ingals[Galaxy Clusters 3] Bins Galaxy Cluster	a 18 [2]
Redshift Bins - zp[Galaxy Clusters 3] Bedshift Bins - z[Galaxy Clusters 18]	Redshift relation
	^{0.} 05 72
	- scatter
	o.6
	e a la construction de la constr
	0.3
	[*] ~
der nertal lines aus hekkeutille fassi (00000001974 (andust) en veittifanterian, and Dadabi	2[1] · · · · · · · · · · · · · · · · · · ·
Pro percentine agenting and internet agence of the hyproduce of guilling and reash	

Dashboard

				0	S Science Portal Dashboard				
elease: Y1A1	✓ Dataset:	SPT	*						
Data instalation				Special Samples	Special Samples				
Pipeline	Start	Duration	Runs	Status	Pipeline	Start	Duration	Runs	Stat
QA Coadd	2016-08-24 15:11:57	02:13:45	1	•	ELG Sample	2017-06-07 10:26:47	00:04:25	2	•
Install Catalogs	2016-03-08 15:40:13	01:51:56	1	•	RED LSS Sample	2017-06-09 15:59:29	00:06:55	2	•
Install Mangle Mask	2016-06-10 10:21:14	05:49:15	1	•	Catalog Association				
Install Bright Mask	2016-06-10 10:15:36	00:01:07	2	•					
Install Depth Maps	2016-09-20 15:46:18	01:09:07	2	•					
Systematic Maps	2016-06-13 12:47:35	12:43:31	2	•					
Zeropoint Correction	2017-01-18 15:47:17	05:48:03	Z	•					
Coarse Depth Map				•	Science Workflows				
		Total: 29:36:44			Pipeline	Start	Duration	Runs	Stat
					ACF GE				
Asta Preparation					ACF LSS	2017-06-09 11:39:57	02:12:36	1	•
Pipeline	Start	Duration	Runs	Status	StarHorse	2017-05-12 16:12:48	30:05:20	1	•
SG Separation	2017-07-06 10:41:39	02:37:33	2	•	WAZP	2017-09-04 15:18:46	00:39:30	4	•
Spectroscopic Sample	2017-09-14 10:35:29	00:00:26	20						
Training Set Maker	2017-09-14 10:50.47	00:17:25	ш	•					
Photo-z Training	2017-07-12 15:33:23	01:30:13	17	•					
Photo-z Compute	2017-07-28 18:43:13	03:28:14	21	•	Parameter stimation				
Galaxy Properties				•					
		Total: 7.53.51			Utilities				
Science-ready Catalogs					Pipeline	Start	Duration	Runs	State
Pipeline	Start	Duration	Runs	Status	Catalog Comparison	2016-08-05 14:04:35	01:08:43	- P	•
Cluster	2017-09-11 10:27:48	05:04:02	18	•	Cluster-Cluster Matching	2017-06-15 00:27:34	06:00:45	24	•
GE					Cluster-Halo Matching	2017-04-18 09:20:56	00:14:51	1	•
GA	2017-05-12 13:37:02	01:35:01	3		Concatenate Fields	2017-02-01 23:33:59	00:51:11	4	•
LSS	2017-06-07 16:14:24	02:42:36	2		Download Tool	2017-09-13 13:02:01	00:00:35	30	•
Georgie					Export Table	2017-06-29 15:03:40	38:34:42	209	•

Content

Introduction

- Halo Abundance Formalism
- **Observations of Galaxy Clusters**
- Statistical Methods
- **Observational Effects**
- Simulation Results
- Science Portal
- Conclusions

Conclusions

- Galaxy clusters comprise a powerful tool for constraining cosmology.
- It is extremely important to consider the observational effects.
- The proposed functional form for the corrections on the prediction agrees with simulation measurements at medium and high richnesses.
- ► The pipeline for halos was shown to be operating properly.
- ► The pipeline for clusters will be operating soon.
- We (DES-Brazil) are producing a WaZp catalog for the DES Y1 data in the portal.

Thank You!

Aguena, M. and Lima, M. (2016). Effects of Completeness and Purity on Cluster Dark Energy Constraints. *ArXiv e-prints*.

- Arnouts, S., Walcher, C. J., Le Fèvre, O., Zamorani, G., Ilbert, O., Le Brun, V., Pozzetti, L., Bardelli, S., Tresse, L., Zucca, E., Charlot, S., Lamareille, F., McCracken, H. J., Bolzonella, M., Iovino, A., Lonsdale, C., Polletta, M., Surace, J., Bottini, D., Garilli, B., Maccagni, D., Picat, J. P., Scaramella, R., Scodeggio, M., Vettolani, G., Zanichelli, A., Adami, C., Cappi, A., Ciliegi, P., Contini, T., de la Torre, S., Foucaud, S., Franzetti, P., Gavignaud, I., Guzzo, L., Marano, B., Marinoni, C., Mazure, A., Meneux, B., Merighi, R., Paltani, S., Pellò, R., Pollo, A., Radovich, M., Temporin, S., and Vergani, D. (2007). The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1. Astronomy and Astrophysics, 476:137–150.
- Bardeen, J. M., Bond, J. R., Kaiser, N., and Szalay, A. S. (1986). The statistics of peaks of Gaussian random fields. *Astrophysical Journal*, 304:15–61.
- Baxter, E. J., Rozo, E., Jain, B., Rykoff, E., and Wechsler, R. H. (2016). Constraining the mass-richness relationship of redMaPPer clusters with angular clustering. *Monthly Notices of the Royal Astronomical Society*, 463:205–221.
- Behroozi, P., Wechsler, R., and Wu, H.-Y. (2012). Rockstar: Phase-space halo finder. Astrophysics Source Code Library.
- Behroozi, P. S., Wechsler, R. H., and Wu, H.-Y. (2013). The ROCKSTAR Phase-space Temporal Halo Finder and the Velocity Offsets of Cluster Cores. *Astrophysical Journal*, 762:109.
- Carlstrom, J. E., Holder, G. P., and Reese, E. D. (2002). Cosmology with the Sunyaev-Zel'dovich Effect. *Annual Review of Astronomy and Astrophysics*, 40:643–680.

- Clerc, N., Merloni, A., Zhang, Y.-Y., Finoguenov, A., Dwelly, T., Nandra, K., Collins, C., Dawson, K., Kneib, J.-P., Rozo, E., Rykoff, E., Sadibekova, T., Brownstein, J., Lin, Y.-T., Ridl, J., Salvato, M., Schwope, A., Steinmetz, M., Seo, H.-J., and Tinker, J. (2016). SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV. *Monthly Notices of the Royal Astronomical Society*, 463:4490–4515.
- Cole, S. and Kaiser, N. (1989). Biased clustering in the cold dark matter cosmogony. *Monthly Notices of the Royal Astronomical Society*, 237:1127–1146.
- Dietrich, J. P. and Hartlap, J. (2010). Cosmology with the shear-peak statistics. *Monthly Notices of the Royal Astronomical Society*, 402:1049–1058.
- Dietrich, J. P., Zhang, Y., Song, J., Davis, C. P., McKay, T. A., Baruah, L., Becker, M., Benoist, C., Busha, M., da Costa, L. A. N., Hao, J., Maia, M. A. G., Miller, C. J., Ogando, R., Romer, A. K., Rozo, E., Rykoff, E., and Wechsler, R. (2014). Orientation bias of optically selected galaxy clusters and its impact on stacked weak-lensing analyses. *Monthly Notices of the Royal Astronomical Society*, 443:1713–1722.
- Erickson, B. M. S., Cunha, C. E., and Evrard, A. E. (2011). Influence of projection in cluster cosmology studies. *Physical Review D*, 84(10):103506.
- Evrard, A. E., Metzler, C. A., and Navarro, J. F. (1996). Mass Estimates of X-Ray Clusters. *Astrophysical Journal*, 469:494.
- Farahi, A., Evrard, A. E., Rozo, E., Rykoff, E. S., and Wechsler, R. H. (2016). Galaxy cluster mass estimation from stacked spectroscopic analysis. *Monthly Notices of the Royal Astronomical Society*, 460:3900–3912.
- Farrens, S., Abdalla, F. B., Cypriano, E. S., Sabiu, C., and Blake, C. (2011). Friends-of-friends groups and clusters in the 2SLAQ catalogue. *Monthly Notices of the Royal Astronomical Society*, 417:1402–1416.

- Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. (2013). emcee: The MCMC Hammer. *PASP*, 125:306–312.
- Fosalba, P., Crocce, M., Gaztañaga, E., and Castander, F. J. (2015). The MICE grand challenge lightcone simulation - I. Dark matter clustering. *Monthly Notices of the Royal Astronomical Society*, 448:2987–3000.
- Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C. L., Dunkley, J., Nolta, M. R., Halpern, M., Hill, R. S., Odegard, N., Page, L., Smith, K. M., Weiland, J. L., Gold, B., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E., and Wright, E. L. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. *Astrophysical Journal Supplement*, 208:19.
- Hoffmann, K., Bel, J., and Gaztañaga, E. (2015). Comparing halo bias from abundance and clustering. *Monthly Notices of the Royal Astronomical Society*, 450:1674–1692.
- Ilbert, O., Arnouts, S., McCracken, H. J., Bolzonella, M., Bertin, E., Le Fèvre, O., Mellier, Y., Zamorani, G., Pellò, R., Iovino, A., Tresse, L., Le Brun, V., Bottini, D., Garilli, B., Maccagni, D., Picat, J. P., Scaramella, R., Scodeggio, M., Vettolani, G., Zanichelli, A., Adami, C., Bardelli, S., Cappi, A., Charlot, S., Ciliegi, P., Contini, T., Cucciati, O., Foucaud, S., Franzetti, P., Gavignaud, I., Guzzo, L., Marano, B., Marinoni, C., Mazure, A., Meneux, B., Merighi, R., Paltani, S., Pollo, A., Pozzetti, L., Radovich, M., Zucca, E., Bondi, M., Bongiorno, A., Busarello, G., de La Torre, S., Gregorini, L., Lamareille, F., Mathez, G., Merluzzi, P., Ripepi, V., Rizzo, D., and Vergani, D. (2006). Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. *Astronomy and Astrophysics*, 457:841–856.

- Ilbert, O., Capak, P., Salvato, M., Aussel, H., McCracken, H. J., Sanders, D. B., Scoville, N., Kartaltepe, J., Arnouts, S., Le Floc'h, E., Mobasher, B., Taniguchi, Y., Lamareille, F., Leauthaud, A., Sasaki, S., Thompson, D., Zamojski, M., Zamorani, G., Bardelli, S., Bolzonella, M., Bongiorno, A., Brusa, M., Caputi, K. I., Carollo, C. M., Contini, T., Cook, R., Coppa, G., Cucciati, O., de la Torre, S., de Ravel, L., Franzetti, P., Garilli, B., Hasinger, G., Iovino, A., Kampczyk, P., Kneib, J.-P., Knobel, C., Kovac, K., Le Borgne, J. F., Le Brun, V., Fèvre, O. L., Lilly, S., Looper, D., Maier, C., Maineri, V., Mellier, Y., Mignoli, M., Murayama, T., Pellò, R., Peng, Y., Pérez-Montero, E., Renzini, A., Ricciardelli, E., Schiminovich, D., Scodeggio, M., Shioya, Y., Silverman, J., Surace, J., Tanaka, M., Tasca, L., Tresse, L., Vergani, D., and Zucca, E. (2009). Cosmos Photometric Redshifts with 30-Bands for 2-deg². Astrophysical Journal. 690:1236–1249.
- Jenkins, A., Frenk, C. S., White, S. D. M., Colberg, J. M., Cole, S., Evrard, A. E., Couchman, H. M. P., and Yoshida, N. (2001). The mass function of dark matter haloes. *Monthly Notices of the Royal Astronomical Society*, 321:372–384.
- Kacprzak, T., Kirk, D., Friedrich, O., Amara, A., Befregier, A., Marian, L., Dietrich, J. P., Suchyta, E., Aleksić, J., Bacon, D., Becker, M. R., Bonnett, C., Bridle, S. L., Chang, C., Eifler, T. F., Hartley, W. G., Huff, E. M., Krause, E., MacCrann, N., Melchior, P., Nicola, A., Samuroff, S., Sheldon, E., Troxel, M. A., Weller, J., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Evrard, A. E., Neto, A. F., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Martini, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V.,

Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., Zhang, Y., and DES Collaboration (2016). Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. *Monthly Notices of the Royal Astronomical Society*, 463:3653–3673.

Kaiser, N. (1984). On the spatial correlations of Abell clusters. *Astrophysical Journal Letters*, 284:L9–L12.

Lacasa, F., Lima, M., and Aguena, M. (2016). Super-sample covariance approximations and partial sky coverage. *ArXiv e-prints*.

Lima, M. and Hu, W. (2007). Photometric redshift requirements for self-calibration of cluster dark energy studies. *Physical Review D*, 76(12):123013.

Marian, L., Smith, R. E., Hilbert, S., and Schneider, P. (2012). Optimized detection of shear peaks in weak lensing maps. *Monthly Notices of the Royal Astronomical Society*, 423:1711–1725.

Mazure, A., Adami, C., Pierre, M., Le Fèvre, O., Arnouts, S., Duc, P. A., Ilbert, O., Lebrun, V., Meneux, B., Pacaud, F., Surdej, J., and Valtchanov, I. (2007). Structure detection in the D1 CFHTLS deep field using accurate photometric redshifts: a benchmark. Astronomy and Astrophysics, 467:49–62.

Mo, H. J. and White, S. D. M. (1996). An analytic model for the spatial clustering of dark matter haloes. *Monthly Notices of the Royal Astronomical Society*, 282:347–361.

Peel, A., Lin, C.-A., Lanusse, F., Leonard, A., Starck, J.-L., and Kilbinger, M. (2017). Cosmological constraints with weak-lensing peak counts and second-order statistics in a large-field survey. 599:A79.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G., and et al. (2016). Planck 2015 results. XIII. Cosmological parameters. , 594:A13. Press, W. H. and Schechter, P. (1974). Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. *Astrophysical Journal*, 187:425–438.

Saro, A., Bocquet, S., Rozo, E., Benson, B. A., Mohr, J., Rykoff, E. S., Soares-Santos, M., Bleem, L., Dodelson, S., Melchior, P., Sobreira, F., Upadhyay, V., Weller, J., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Bauer, A. H., Bayliss, M., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Brodwin, M., Brooks, D., Buckley-Geer, E., Burke, D. L., Carlstrom, J. E., Capasso, R., Capozzi, D., Carnero Rosell, A., Carrasco Kind, M., Chiu, I., Covarrubias, R., Crawford, T. M., Crocce, M., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., de Haan, T., Diehl, H. T., Dietrich, J. P., Doel, P., Cunha, C. E., Eifler, T. F., Evrard, A. E., Fausti Neto, A., Fernandez, E., Flaugher, B., Fosalba, P., Frieman, J., Gangkofner, C., Gaztanaga, E., Gerdes, D., Gruen, D., Gruendl, R. A., Gupta, N., Hennig, C., Holzapfel, W. L., Honscheid, K., Jain, B., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lin, H., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., McDonald, M., Miller, C. J., Miguel, R., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C. L., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Schubnell, M., Sevilla, I., Smith, R. C., Stalder, B., Stark, A. A., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Tucker, D., Vikram, V., von der Linden, A., Walker, A. R., Wechsler, R. H., Wester, W., Zenteno, A., and Ziegler, K. E. (2015). Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters. Monthly Notices of the Royal Astronomical Society, 454:2305–2319.

Sheth, R. K., Mo, H. J., and Tormen, G. (2001). Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. *Monthly Notices of the Royal Astronomical Society*, 323:1–12.

Sheth, R. K. and Tormen, G. (1999). Large-scale bias and the peak background split. *Monthly Notices of the Royal Astronomical Society*, 308:119–126.

Simet, M., McClintock, T., Mandelbaum, R., Rozo, E., Rykoff, E., Sheldon, E., and Wechsler, R. H. (2017). Weak lensing measurement of the mass-richness relation of SDSS redMaPPer clusters. *Monthly Notices of the Royal Astronomical Society*, 466:3103–3118.

Tinker, J., Kravtsov, A. V., Klypin, A., Abazajian, K., Warren, M., Yepes, G., Gottlöber, S., and Holz, D. E. (2008). Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality. *Astrophysical Journal*, 688:709–728.

Tinker, J. L., Robertson, B. E., Kravtsov, A. V., Klypin, A., Warren, M. S., Yepes, G., and Gottlöber, S. (2010). The Large-scale Bias of Dark Matter Halos: Numerical Calibration and Model Tests. *Astrophysical Journal*, 724:878–886.

Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S., and Van Speybroeck, L. (2006). Chandra Sample of Nearby Relaxed Galaxy Clusters: Mass, Gas Fraction, and Mass-Temperature Relation. *Astrophysical Journal*, 640:691–709.