

Is the morphology telling us the truth about quenching?

Paola Dimauro

18 April 2019

Hubble sequence

Stellar masses

a D	Dima	Jrc
	a D	a Dimai

Introduction

Galaxy formation

Illustris simulation

Galaxy - Star formation activity

conversion of gas into stars

Galaxy - Star formation activity

Whitaker et al 2012

Introduction

Quenching: fundamental question mark

⁽Madau & Dikinson 2014)

Galaxy - Star formation activity

Galaxy - Star formation activity

Introduction:

Why galaxies stop forming stars? quenching mechanisms

The main source to produce stars is the gas content

Halo mass quenching stops the accretion of new cod gas (Birboim & Dekel 2003, Peng 2015)

The accretion of a central density stabilizes the gas in the disk (Martig 2008)

Outflows of gas AGN, supernove

(Hopkins 2014, Cattaneo 2009)

Gravitational interactions (ram pressure stripping, tidal interaction, etc)

(Gunn & Gott 1972, Nulsen 1982, Moore et al. 1996)

Paola Dimauro

Introduction

Bimodality of galaxy properties

Stellar mass function for different morphologies

How galaxies evolve?

compaction mergers rejuvenation disk instability

Galaxy properties

(Morselli et al. 2016)

Paola Dimauro	18 April 2019	13

(Wuyts 2011, Whitaker 2015, Barro 2015, 2016, Huertas-Company 2016, Dimauro 2018, 2019)

Bulge growth

Bulge-disk decomposition

1) Modeling the surface brightness profile

bands (400 - 1500 nm)

exp.disk

2) <u>Best model selection</u>

3) Spectral Energy Distribution

(Dimauro 2018, Tucillo 2018)

- Stellar masses
- rest-frame colors

Can we put constraints on bulge formation mechanisms?

Does the quenching imply a morphological transformation?

Questions

Does the quenching imply a morphological transformation?

Mass-size bulge and disc

Paola Dimauro

Bulges and Disks in different morphologies

Paola Dimauro	18 April 2019	19
---------------	---------------	----

Bulges and Disks in different morphologies

Observed sizes are divided by the expected values from the best fit

Paola Dimauro	18 April 2019	20
	·	

Bulges and Disks in different morphologies

For the same disk mass higher B/T correspond to higher stellar mass, consequently higher halo mass and larger virial radii

Paola Dimauro	18 April 2019	2
---------------	---------------	---

Bulges and Disks in different morphologies

Bulges sizes in different morphologies are compatible confirmed by the K-S test

18 April 2019	22
	18 April 2019

BULGES

Uncertainties on the model

18 April 2019	23
	18 April 2019

BULGES

Uncertainties on the model

Dependence between size and B/T

Paola Dimauro	18 April 2019	24

BULGES

Uncertainties on the model

Dependence between size and B/T

Pearson coefficient: B/T - reB = 0.14 B/T - reD = 0.17 NO correlation

Paola Dimauro	18 April 2019	25
---------------	---------------	----

Uncertainties on the model

Dependence between size and B/T

Different formation mechanisms

- Merger
- Disk instability
- Wet Compaction

Paola Dimauro	18 April 2019	26
r dola Diriladio	107,011/2010	<u>کر</u>

Can we put constraints on bulge formation mechanisms?

Bulges show weak dependence with the morphology of the host galaxies

Hint of possible different assembly history

Can we put constraints on bulge formation mechanisms?

Galaxy - Main SF sequence

Dimauro et al. 2019b in prep

Paola Dimauro	18 April 2019	30

Galaxy - Main SF sequence

Dimauro et al. 2019b in prep

Paola Dimauro	18 April 2019	3
	•	

Structural properties: Main Sequence

Galaxy - Main SF sequence

Paola Dimauro

Bulges and Disks in SF or Q host galaxies

Bulges and Disks in SF or Q host galaxies

Paola Dimauro	19 October 2017	34

Bulges and Disks in SF or Q host galaxies

Paola Dimauro	19 October 2017	35

Systematics from the fit?

Paola Dimauro

Systematics from the fit?

Mass distribution?

Additional accretion of mass to the central region

Sersic index progressively increases through cosmic time, no significant difference detected between the two populations of bulges.

Bulges in star forming galaxies are more elongated.

18 April 2019

- Does the quenching imply a morphological transformation?
 - Bulges in star forming systems are larger (~20%) than those in
 - quiescent systems -> compaction or progenitor bias?
 - Disk structure is similar in star forming and quiescent galaxies ->
 - disks are weekly affected by the quenching process, that it's
 - mostly affecting the central part of the galaxy

Colors of bulges and disks

Dimauro et al. 2019b in prep

Paola Dimauro

Colors of bulges and disks

Disks are blue in star forming systems and red in quiescent ones Bulges are always redder than disks Bulges are more dusty in star forming systems than those in quiescent ones

Dimauro et al. 2019b in prep

Paola Dimauro	18 April 2019	43

Future projects

- Extend the analysis on other datasets -> larger wavelength coverage (Dimauro et al 2019b in prep)
- Larger sample -> automatic modeling (Tucillo et al 2018, 2019 *in prep*)
- Compare results with numerical simulations
- Study the effect of dense environments on bulge and disk properties

Conclusions

Part 1: catalog

- We built a catalog for ~17.300 galaxies, using 7/4 bands, released to the community <u>http://lerma.obspm.fr/huertas/form_CANDELS</u>
- It is the largest catalog of bulge and disk properties available today
- We introduced a novel selection algorithm

Part 2: Properties of bulges

Can we put constraints on bulge formation mechanisms?

- Bulge sizes are similar over a wide range of B/T (0.2<B/T<0.8)
- Pure bulges (B/T>0.8) are 20% larger than bulges embedded in disks
- Possible different assembly histories

Does the quenching imply a morphological transformation?

- Bulges in star forming systems are larger (~20%) than those in quiescent systems
- Compaction or progenitor bias

Paola Dimauro	
---------------	--

Thank you very much!

Paola Dimauro