
Using ParSL to Paralellize WaZP

Members: Rocío Zorrilla D.Sc.1
Eng. Carlos Cardoso 1

Adolfo Simões 1

Coordinator: Prof. Fábio Porto, D.Sc.1
1Laboratório Nacional de Compuação Científica (LNCC)

June 16, 2023.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 1 / 32

Outline

1. Introduction

2. Methodology

3. Implementation and Results

4. Discussion and Analysis

5. Conclusions and Future Works

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 2 / 32

Outline

1. Introduction

2. Methodology

3. Implementation and Results

4. Discussion and Analysis

5. Conclusions and Future Works

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 3 / 32

The Science Case
What is WaZP?

▶ WaZP: Galaxy cluster finder based on photometric redshifts called “Wavelet Z Photometric”
in large optical surveys.

▶ Galaxy Cluster: a structure that consists of anywhere from hundreds to thousands of
galaxies.

▶ Optical Survey: is a general map or image of a region of the sky (or of the whole sky) that
lacks a specific observational target.

▶ WaZP must find Galaxy clusters on optical surveys:

– DES: 5000 square degrees of the southern sky producing as much as 2.5TB/night.

– LSST: a project to image the entire southern sky every three nights, roughly producing 20TB/night
(Final database size (DR11): 15 PB)

▶ Implemented in Python 3.8.: Using Numpy for aggregation and merge processes. For
astronomic processes mainly use HealPy, Sparse2D and AstroPy. Integrates a third-party
specialized program to process data (MR-Filter in C).

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 4 / 32

How it works.
Quick Overview for the WaZP Workflow

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 5 / 32

Project Objectives:

Main Objective
Implement a parallel version of WaZP to efficiently process large volumes of data in a distributed
environment.

Parallelization Analysis:

▶ Analyze the original code and define the baseline environment.

▶ Performance analysis to detect data dependency, bottlenecks and critical code sections.

▶ Select a parallelism paradigm suitable for the problem.

▶ Implement the strategy adopted and carry out performance experiments.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 6 / 32

Outline

1. Introduction

2. Methodology

3. Implementation and Results

4. Discussion and Analysis

5. Conclusions and Future Works

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 7 / 32

Using WaZP - The Sequential Version
Dataset DC2_Test

▶ The original WaZP Code is written sequentially.

▶ For the DC2_Test dataset which covers an effective area of approximately 10 square
degrees.

▶ As a result are generated 3 tiles with 29 slices each.

▶ The total execution time is 58 minutes.

▶ Using perf and palanteer, performance tools, we extracted and identify:

– Execution flowchart.

– Processing bottlenecks.

– Data dependency.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 8 / 32

Code Analysis and Parallelization Opportunities
Original Code Flowchart

▶ run_wazp_tile: sequential tile
processing, calls
wazp_tile_slice to
sequentially process slices.

▶ run_pmem_tile: sequential tile
processing aggregating results
from previous steps.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 9 / 32

Profiling
▶ Using perf: Main : 2898s (100%)

3x run_wazp_tile : 2188s (75.5%)
3x run_pmem_tile : 666s (23%)
bkg_global_survey : 28s (1%)
wazp_concatenate : 7.28s (0.3%)
pmem_concatenate_tiles : 2.68s (0.1%)

▶ Using Palanteer, a profiling tool, we acquire performance data and function dependency:

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 10 / 32

Performance Analysis Insights
Data Dependency

▶ The tile processing within the run_wazp_tile and run_pmem_tile functions present
data independence, making them suitable to data parallelism (Bag of Tasks).

▶ The slice processing within the wazp_tile_slice function also have some data
independence, but parallelization is not trivial because each slice lacks information about its
own tile.

▶ Right after the run_wazp_tile execution, there is a procedure that waits for all the tiles be
completed before the execution of the run_pmem_tile function.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 11 / 32

Parallel Scripting Library – ParSL

▶ ParSL is a tool for enabling parallel and distributed computing in Python.

▶ Supports a wide range of execution environments, including multicore CPUs, GPUs, clusters,
and cloud computing platforms.

▶ Automatically parallelizes and distributes tasks across available resources.

▶ Supports dynamic task scheduling and load balancing, optimizing resource utilization and
performance.

▶ Offers fault tolerance mechanisms, allowing tasks to be retried or rescheduled in case of
failures.

▶ Used in DES pipelines .

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 12 / 32

ParSL and SLURM

▶ PARSL configuration allow us to specify:

– Number of compute nodes that will process slices. (num_nodes)

– Number of slices that each node can process at the same time. (task_per_node).

▶ With PARSL it is possible to execute up to (num_nodes × task_per_node), but only if there
are enough slices available.

executors=[
HighThroughputExecutor(

label=’WaZP_SD’,
one worker per manager/node
max_workers=3,
provider=LocalProvider(

channel=LocalChannel(script_dir=’.’),
nodes_per_block=10,
launcher=SrunLauncher(),
cmd_timeout=120,
init_blocks=1,
max_blocks=1,

),
)

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 13 / 32

Outline

1. Introduction

2. Methodology

3. Implementation and Results

4. Discussion and Analysis

5. Conclusions and Future Works

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 14 / 32

Parallelize the Tile Processing

We use ParSL to implement the data parallelism to process the tiles, for example for
run_wazp_tile:

Figure: Process of Tiles in Parallel.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 15 / 32

Implementation with ParSL
For the run_wazp_tile function

▶ Declare the decorator for the funtion to be parallelized:

@python_app
def run_wazp_tile(config, dconfig, thread_id):

wazp code

▶ Implement an accumulator to wait all the tiles are processed:

new list to accumulate partial tile outputs
tile_results = []

iterate all tiles
for ith in np.unique(all_tiles[’thread_id’]):

call run_wazp_tile and save partial result
tile_results.append(run_wazp_tile(config, dconfig, ith))

retrieve the partial results
outputs_tiles = [r.result() for r in tile_results]

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 16 / 32

Experiment Setup
Computational Environment

▶ SDumont is composed by 36.472 CPU cores, distributed in 1.134 nodes (hyperthreading
activated).

▶ The cpu_shared partition has available 480 CPUs, distributed across 20 nodes.

▶ Each user has the possibility to execute 96 jobs simultaneously with a maximum of 96 hours
to execute the job.

▶ RedHat Linux 7.6, using the Software Stack Bull Supercomputing Cluster Suite 5 for nodes
management.

▶ SLURM(Simple Linux Utility for Resource Management) for cluster management and job
scheduling system.

▶ FileSystem Lustre v2.12 as parallel distributed file system.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 17 / 32

Experiment Setup

▶ Configuration for the DC2_400_simulation dataset:
– In wazp.cfg and possibly change the value for NSide (control the size of the tile).

1. Change the name of the dataset to be processed.

2. Possibly change the value for the Nside variable, to control the size of each tile.

– In data.cfg:

1. Change the input data structure, in particular for the footprint.

2. Add the galcat options and values.

3. Add the footprint options and PATH for the footprint file.

4. Add the magstar_file options and values.

5. Add the zp_metrics options and change some values.

▶ For this dataset that represents 440 square degrees, WaZP generates 49 tiles with 87 slices
for each tile.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 18 / 32

Performance Metrics
Speedup and Efficiency

▶ Speedup: Measures how well the application scales when adding new computing devices to
the execution environment.

S(N) =
t(1)
t(N)

(1)

where:
– t(1) – execution time of the sequential application running on a system with 1 computing device,
– t(N) – execution time of the application on a system with N computing devices.

▶ Efficiency: Measure of how effectively a parallel algorithm or system utilizes available
computational resources.

pe(N) =
t(1)

N · t(N)
(2)

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 19 / 32

Outline

1. Introduction

2. Methodology

3. Implementation and Results

4. Discussion and Analysis

5. Conclusions and Future Works

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 20 / 32

Experiment 1: ParSL for Tile Processing with run_wazp_tile
Speedup

Total number of Parsl workers

S
pe

ed
up

 T
ile

 P
ro

ce
ss

in
g

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60

Tile Processing on SD CPU-Shared (10 nodes) with DC2_400_Simulation Dataset

▶ Non-linear speedup, multiple processes almost invariably introduces some overhead.
▶ For Total ParSL workers above to 50 the speedup has a parallel slowdown, diminished

performance.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 21 / 32

Experiment 1: ParSL for Tile Processing with run_wazp_tile
Efficiency

Total number of ParSL workers

P
ar

al
le

l E
ffi

ci
en

cy

0.000

0.250

0.500

0.750

1.000

1.250

10 20 30 40 50 60

Par. Eff. Tiles Processing Par. Eff. WaZP Execution

Parallel Efficiency for Tile Processing and WaZP Execution on SDumont (CPU-Shared, 10 nodes)

▶ High efficiency means the effective use of available resources and achieving good
performance gains from parallelism.

▶ The unbalanced datasets to be processed on each computational node inside the wazp tile
slice function

▶ Total execution time reduced to 5 hours.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 22 / 32

What about run_pmem_tile?

Number of ParSL Workers

P
m

em
 E

xe
cu

tio
n

Ti
m

e
P

er
ce

nt
ag

e

10.000

20.000

30.000

40.000

10 20 30 40 50 60

run_pmem_tile Percentage of WazP Execution Time

▶ By reducing the run_wazp_tile execution time, the sequential execution of the
run_pmem_tile function start to be considered as a bottleneck.

▶ The Figure shows hows the run_pmem_tile percentage increases.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 23 / 32

Experiment 2: ParSL for Tile Processing with run_pmem_tile
Speedup

Total Parsl Workers

S
pe

ed
-U

p
ru

n_
pm

em
_t

ile
 P

ro
ce

ss
in

g

5.000

10.000

15.000

20.000

25.000

30.000

10 20 30 40 50 60

Pmem Tile Processing on SD CPU-SHARED (10 nodes) with DC2_400_Simulation Dataset

▶ Non-linear speedup, multiple processes almost invariably introduces some overhead.

▶ For Total ParSL workers above to 50 the speedup has a parallel slowdown, diminished
performance.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 24 / 32

Experiment 2:ParSL for Tile Processing with run_wazp_tile and
run_pmem_tile
Speedup

Total ParSL Workers

S
pe

ed
-U

p
O

ve
ra

ll
P

ro
ce

ss
in

g

1.000

2.000

3.000

4.000

10 20 30 40 50 60

WaZP Execution on SD CPU-Shared (10 nodes) with DC2_400_Simulation Dataset

▶ Non-linear speedup, multiple processes almost invariably introduces some overhead.
▶ For Total ParSL workers above to 50 the speedup has a parallel slowdown, diminished

performance.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 25 / 32

Experiment 2: ParSL for Tile Processing with run_wazp_tile and
run_pmem_tile
Efficiency

Total ParSL Workers

0.000

0.250

0.500

0.750

1.000

1.250

10 20 30 40 50 60

Efficiency run_wazp_tile Efficiency run_pmem_tile

Parallel Efficiency for Tile Processing and WaZP Execution on SDumont (CPU-Shared, 10 nodes)

▶ High efficiency means the effective use of available resources and achieving good
performance gains from parallelism.

▶ The unbalanced datasets to be processed on each computational node inside the wazp tile
slice function

▶ Total execution time reduced to 3 hours.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 26 / 32

Unbalanced Tiles and..... MR-Filter

▶ Each slice is generated based on the red-shift measurement and in consequence the
amount of information to process for slice would increase and also the file size.

▶ for the shallow slices, the measurements of the processing time are tightly clustered and
have low variance. For the deeper slices each box-plot has a wider variation which indicates
that the amount of objects in the tile affect the size of the slice.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Slice ID

0

20

40

60

80

100

120

140

160

Pr
oc

es
sin

g
Ti

m
e

(S
ec

on
ds

)

Processing Time of Slices for a WaZP Execution

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 27 / 32

mr_filter code

▶ OpenMP process that generates one thread for each CPU core available in the system.

▶ Experiments shows that we can increase performance when running multiple instances of
mr_filter in the same node (workers_per_node.

▶ We execute mr_filter manually with perf to analyze the CPU utilization:

▶ We can use the OMP_NUM_THREADS variable to control the amount of concurrent processes.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 28 / 32

Outline

1. Introduction

2. Methodology

3. Implementation and Results

4. Discussion and Analysis

5. Conclusions and Future Works

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 29 / 32

Conclusions

▶ It is possible to parallelize the workload of WaZP with Parsl after identifying key steps in the
execution flow that contain independent tasks.

▶ Parsl is only able to efficiently parallelize the workload as long as there are enough tasks:
the speedup gets “saturated” when increasing the worker count and we achieve a plateau of
performance.

▶ Current solution parallelizes the tiles; but improving to use slices can remedy the drawback
of having too few tasks for Parsl to distribute among workers.

▶ The CPU-Shared partition was readily available for job submissions with low waiting time.
However, resource sharing may interfere with obtaining accurate performance results.

▶ The CPU-Shared partition was useful to validate the proposed approach, but other more
powerful partitions, with significantly larger waiting queue time, should be used for the
largest datasets.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 30 / 32

Future Works

▶ Tile parallellization reach to a slowdown based on the maximum number of tiles and the
resources available, it is possible to overcome this limitation by having a data partitioning
based on the slices instead the tiles.

▶ Improved load balancing and task construction enhance parallel efficiency by minimizing
idle time for workers. Efficient scheduling and maintaining result integrity involve
estimating task complexity, prioritizing larger tasks, and organizing partial results for proper
input consistency.

▶ When discussing the results of mr_filter, we mentioned the existence of the
OMP_NUM_THREADS variable.

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 31 / 32

Thank you!

Rocío Zorrilla (LNCC) Using ParSL to Paralellize WaZP June 16, 2023. 32 / 32

	Introduction
	What is WaZP?

	Methodology
	Implementation and Results
	Discussion and Analysis
	Conclusions and Future Works

