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Observational cosmology: what does clustering mean?

� =

⇢ � ⇢0

⇢0

⇠(r) = h�(x)�(x + r)i

P (k) = h�(k)�(k)i

“probability of seeing structure”, can be cast
in terms of the overdensity 

The correlation function is simply the real-
space 2-point statistic of the field 

Its Fourier analogue, the power spectrum is 
defined by

By analogy, one should think of “throwing down” 
Fourier modes rather than “sticks”, and 
matching density2 along the wave

P and ξ contain the same information - encoded 
in different ways

2-point clustering

Clustering strength = number of pairs
beyond random

dP = ⇢2 [1 + ⇠(r)] dV1dV2 (1)



Observational cosmology: formal clustering definitions

I the “probability of seeing structure” can be recast in terms of
the overdensity

� = (⇢(x) � ⇢) /⇢ (2)

I The correlation function of the field,

⇠(r) = h�(x)�(x+ r )i (3)

or its Fourier analogue, the power spectrum,

P(k) =

Z
d3r ⇠(r)e�ik·r (4)

which describes the amplitude of the fluctuations as a
function of scale k .
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Observational cosmology: the galaxy power spectrum

P
gal

(k , µ, z) = knT 2(k)D2(z)[b(z) + f (z)µ2]2

µ = k · ˆn/k; ˆn = line � of � sight

(5)

Primordial power spectrum

I kn (standard inflation)

I T 2(k) ! ⌦
m

, m⌫ ..

Amplitude of clustering

I galaxy bias ! P
g

= b(z)P
dm

I D(z) ! ⌦
m

, m⌫ ...

Observational e↵ects $ k , µ, f (z)

I Redshift Space Distortions (RSD)

I Alcock-Paczynksy e↵ect

I (Baryonic acoustic oscillations)
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The Baryonic Acoustic Oscillation: standard ruler

BAO as a standard ruler to better understand the nature of the
acceleration.

r
s

= (1/H0⌦
1/2
m

)

Z
a⇤

0
da

c
s

(a+ a
eq

)1/2
;

k
bao

= 2⇡/r
s

⇠ 0.06h/Mpc ;



The Alcock-Paczynksy test

Galaxy distances are inferred from galaxy redshifts: using a wrong
set of fiducial cosmological parameters to convert redshifts into
distances introduces artificial anisotropy !

e.g . d
p

(z) =
R 0
z

dz 0 c/H(z 0)

Known as Alcock-Paczynski distortion, (Alcock & Paczynski 1979).

I The e↵ect scales di↵erently along and perpendicular to the
line-of-sight direction

↵k / Hfid(z)

H(z)
, ↵? / D

A

(z)

Dfid
A

(z)
(6)
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The Redshift Space distortions

When making a 3D map of the Universe the radial distance is
obtained from observed redshift.

Observed redshift has two components: the
Hubble expansion and peculiar motion of
galaxies, s(r) = r � v

r

(r) r̂ .

Line-of-sight selects out a special direction and breaks
rotational symmetry of underlying correlations.







The Redshift Space distortions

Linear regime ! Coherent infall
over-dense regions squashed and
under-dense regions stretched
along the line of-sight.
Non Linear regime ! random
(thermal) motion, (fingers-of-god)

At large scale the galaxies move because cosmological structure is
growing through gravity. This growth is the dominant source of
RSD.
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Modelling the RSD in the galaxy power spectrum: a simple
linear model

I Mapping, s(r) = r � v
r

(r) r̂

I Conservation of the number of galaxies between redshift and
real space, n(s)[1 + �s(s)]s2ds = n(r)[1 + �(r)]r2dr .

I Linear perturbation theory

@�/@t + ✓ = 0; ✓ = ru (mass conservation)

@u/@t + Hu = �r� (momentum conservation)
(7)

Ps(k , µ) = (b + f µ2)2P(k). (8)

It is convenient to expand the angular dependence on Legendre
Polynomials, e.g. P0(k) =

�
b2 + 2

3bf +
1
5 f

2
�
P(k),
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Modelling the RSD in the galaxy power spectrum: beyond
linear approximation;

I Full mapping;

I Non linear perturbation theory

@�/@t + ✓ = �
Z

d

3k1d
3k2�

D

(k � k12)↵(k1, k2)✓(k1, t)�(k2, ts)

@✓/@t + H✓ + 3/2⌦
m

H2� = �
Z

d

3k1d
3k2�

D

(k � k12)

⇥ �(k1, k2)✓(k1, ⌧)✓(k2, ⌧)

expand density and velocity fields about the linear solutions;

�
n

(k) =
Z

d

3q1...
Z

d

3q
n

�
D

(k � q1..n)Fn(q1, ...,qn)�1(q1)..�1(qn),

✓
n

(k) =
Z

d

3q1...
Z

d

3q
n

�
D

(k � q1..n)Gn

(q1, ...,qn)�1(q1)..�1(qn),



Modelling the RSD in the galaxy power spectrum: beyond
linear approximation;

Ps(k) = [P��+2f µ2P�✓+ f 2µ4P✓✓+A(kµ)+B(kµ)]DFOG[kµf �
v

];

(see Scoccimarro 2004; Taruya 2010; )
More improvements,

I non linear and non local galaxy bias (see Chan 2012)

I beyond standard perturbation theory



Future and current surveys analysis goals

I Improve the methodology used to analyse data

I Development of fast method to measure anisotropic signal

I How to combine data from di↵erent volumes within the
surveys.



Current constrains from RSD on f (z), D(z), b(z)...

Constrain from di↵erent redshift bin of redshift evolving quantities

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z

0.2

0.3

0.4

0.5

0.6

0.7
f

�
8
(z

)
assuming Planck �CDM cosmology

DR12 final consensus
Planck �CDM

6dFGS
SDSS MGS

GAMA
WiggleZ
Vipers

(S. Alam et al. 2016)



How to combine future data from wide redshift ranges

Redshift-bins splitting with traditional clustering analysis,

I loss of signal across bin boundaries

I computational expensive

I window function e↵ects

Optimal redshift weights as smoother windows on data,

I compression of the information in the redshift direction

I sensitivity to evolution with redshift

I Fisher prediction ⇠ 30% better than actual results

I decrease computational e↵ort for large data sets
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The search for optimal weights

Linear compression of a data-set x, Gaussian distributed, with
mean µ and covariance C ,

y = wTx. (9)

For a single parameter ✓
i

,

F
ii

=
1

2

✓
wTC,iw

wTCw

◆2

+

�
wTµ,i

�2

wTCw
, (10)

We maximise F
ii

w.r.t w assuming C a priori, C,i = 0 and the only
non-trivial eigenvector is

wT = C�1µ,i , (11)

For P(k), x is formed by measurements of �2.
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Cosmological model

I We investigate the ⌦
m

(z) relation about ⇤CDM model

⌦
m

(z)

⌦
m,fid(z)

= q0(1 + q1y(z) +
1

2
q2y(z)

2), (12)

y(z) + 1 ⌘ ⌦
m,fid(z)/⌦m,fid(zp);

I We derive a set of weights to optimally measure q0, q1 and q2

I ⌦
m

(q
i

) allows for di↵erent deviations from ⇤CDM
background: all the standard cosmological parameters can be
written in terms of the q

i

;

e.g f (⌦
m

) for modified gravity, the AP parameters through H(⌦
m

)
for deviations from a fiducial geometry etc..
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Modelling the observed power spectrum

wT = C�1µ,i $ P,i directly gives the form of the weights.

Redshift weighting assuming known distance-redshift relation

I linear model for redshift space distortions (b, �8, f )

I bias fiducial model

I [f �8] only

Redshift weighting assuming unknown distance-redshift relation

I combining AP e↵ect with RSD (↵k, ↵?, b, �8, f )
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Power Spectrum weights, when DA is assumed known
(b, �8, f )

Ps(k) = (b + f µ2
k)

2P(k) (13)

(Kaiser, 1987 )

⌦
m

(z , q0, q1, q2)
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The dependence on the fiducial bias model
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Power Spectrum weights, when DA is unknown

P`(k) =
2` + 1

2

Z 1

�1
dµP(k t , µt)L`(µ)

(14) q0
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eBOSS analysis

The quasar sample represents an important sample-test to
investigate the improvements possible through the optimal weights.
Characterized by a wide redshift range, (0.9 � 2.2), and lower
density 82.6/deg

2;
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Preliminary results: [f �8]av and bav
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Preliminary results: q0, q1, q2, �v and b

b(z) = b(z
p

) + @b
@z |

z

p

(z � z
p

)



Conclusion

I We investigate departures in ⌦
m

(q
i

, z) about ⇤ CDM.

I Redshift weights to optimise the measurement of the q
i

,
(b, �8, f , ↵k, ↵?).

I RSD measurements on the eBOSS data

DESI/EUCLID

I 20 - 30 million objects, 0.5 < z < 3.5; 15-18,000 deg2;

I Traditional analysis: e.g for DESI, to be repeated on 35
redshift bins, neglecting cross correlation between di↵erent
volumes.

I Optimal weights technique, as a more e�cient and accurate
alternative would enhance S/N, considering all galaxy pairs.

I Weighting scheme: the method is flexible and works for other
sets of parameters;
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Alternative parametrization: Primordial non-Gaussianity
from LSS

Scale dependent halo bias b
tot

= b +�b, �b(k) / f
NL

/↵(k)
(e.g. Dalai et al. 2008)
Very sensitive at large scales ! Splitting the survey volume
decreases the S/N at large scales
30 � 40% of improvements for eBOSS

Eva-Maria Mueller
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Depends on
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Bias evolution
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