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Table 4
Six-parameter ΛCDM Fit: WMAP Plus External Dataa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+H0 +eCMB+BAO+H0

Fit parameters

Ωbh
2 0.02264 ± 0.00050 0.02229 ± 0.00037 0.02211 ± 0.00034 0.02244 ± 0.00035 0.02223 ± 0.00033

Ωch
2 0.1138 ± 0.0045 0.1126 ± 0.0035 0.1162 ± 0.0020 0.1106 ± 0.0030 0.1153 ± 0.0019

ΩΛ 0.721 ± 0.025 0.728 ± 0.019 0.707 ± 0.010 0.740 ± 0.015 0.7135+0.0095
−0.0096

109∆2
R 2.41 ± 0.10 2.430 ± 0.084 2.484+0.073

−0.072 2.396+0.079
−0.078 2.464 ± 0.072

ns 0.972 ± 0.013 0.9646 ± 0.0098 0.9579+0.0081
−0.0082 0.9690+0.0091

−0.0090 0.9608 ± 0.0080

τ 0.089 ± 0.014 0.084 ± 0.013 0.079+0.011
−0.012 0.087 ± 0.013 0.081 ± 0.012

Derived parameters

t0 (Gyr) 13.74 ± 0.11 13.742 ± 0.077 13.800 ± 0.061 13.702 ± 0.069 13.772 ± 0.059
H0 (km s−1 Mpc−1) 70.0 ± 2.2 70.5 ± 1.6 68.76 ± 0.84 71.6 ± 1.4 69.32 ± 0.80
σ8 0.821 ± 0.023 0.810 ± 0.017 0.822+0.013

−0.014 0.803 ± 0.016 0.820+0.013
−0.014

Ωb 0.0463 ± 0.0024 0.0449 ± 0.0018 0.04678 ± 0.00098 0.0438 ± 0.0015 0.04628 ± 0.00093
Ωc 0.233 ± 0.023 0.227 ± 0.017 0.2460 ± 0.0094 0.216 ± 0.014 0.2402+0.0088

−0.0087

zeq 3265+106
−105 3230 ± 81 3312 ± 48 3184 ± 70 3293 ± 47

zreion 10.6 ± 1.1 10.3 ± 1.1 10.0 ± 1.0 10.5 ± 1.1 10.1 ± 1.0

Notes. a ΛCDM model fit to WMAP nine-year data combined with a progression of external data sets. A complete list of parameter values for
this model, with additional data combinations, may be found at http://lambda.gsfc.nasa.gov/.

The improvement in the baryon density measurement is due
to more precise measurements of the Silk damping tail in the
power spectrum at l ! 1000; the improvements in Ωch

2 and
ΩΛ are due in part to improvements in the high-l TT data, but
also to the detection of CMB lensing in the SPT and ACT data
(Das et al. 2011a; van Engelen et al. 2012), which helps to
constrain Ωm by fixing the growth rate of structure between
z = 1100 and z = 1–2 (the peak in the lensing kernel). Taken
together, CMB data available at the end of the WMAP mission
produce a 1.6% measurement of Ωbh

2 and a 3.0% measurement
of Ωch

2.
The increased k-space lever arm provided by the high-l CMB

data improves the uncertainty on the scalar spectral index by
25%, giving ns = 0.9646 ± 0.0098, which implies a non-zero tilt
in the primordial spectrum (i.e., ns < 1) at 3.6σ . We examine
the implications of this measurement for inflation models in
Section 4.1.

If we assume a flat universe, which breaks the CMB’s
geometric degeneracy, then CMB data alone now provide a
2.3% measurement of the Hubble parameter, H0 = 70.5 ±
1.6 km s−1 Mpc−1, independent of the cosmic distance ladder.
As discussed in Section 3.4, this is consistent with the recent de-
termination of the Hubble parameter using the cosmic distance
ladder: H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al. 2011); we
explore the effect of adding this prior in Section 3.4. We relax
the assumption of flatness in Section 4.5.

We conclude by comparing our results for the ACT and SPT
foreground “nuisance” parameters to those found by the ACT
and SPT teams. For example, we find AACT

Poisson = 14.8+2.3
−2.4 while

the ACT team finds AACT
Poisson = 12.0 ± 1.9. (Note that we do not

expect perfect agreement because we use nine-year WMAP data
and we fit the clustered source amplitude jointly with SPT data,
unlike the ACT team’s treatment.) The ACT team concluded that
the ΛCDM cosmological model (fit to) the 148 GHz spectrum
(and the seven-year WMAP data), marginalized over SZ and
source power is a good fit to the data (Dunkley et al. 2011).
The complete set of foreground parameters fit to the ACT and
SPT data may be found at http://lambda.gsfc.nasa.gov/ for all
the models reported in this paper.

3.3. Adding BAO Data

Acoustic structure in the large-scale distribution of galaxies is
manifest on a co-moving scale of 152 Mpc, where the evolution
of matter fluctuations is largely within the linear regime. A
number of authors have studied the degree to which the acoustic
structure could be perturbed by nonlinear evolution (e.g., Seo &
Eisenstein 2005, 2007; Jeong & Komatsu 2006, 2009; Crocce &
Scoccimarro 2008; Matsubara 2008; Taruya & Hiramatsu 2008;
Padmanabhan & White 2009), and the effects are well below the
current measurement uncertainties. Because it is based on the
same well-understood physics that governs the CMB anisotropy,
we consider measurements of the BAO scale to be the next-
most robust cosmological probe after CMB fluctuations. The
ΛCDM parameters fit to CMB and BAO data are given in the
“+eCMB+BAO” column of Table 4.

Measurements of the tangential and radial BAO scale at
redshift z measure the effective distance DV (z), given in
Equation (1), in units of the sound horizon rs(zd ). This quantity is
primarily sensitive to the total matter and dark energy densities,
and to the current Hubble parameter. Since the BAO scale is
relatively insensitive to the baryon density, Ωbh

2, this parameter
does not improve significantly with the addition of the BAO
prior. However, the low-redshift distance information imposes
complementary constraints on the matter density and Hubble
parameter, improving the precision on Ωch

2 from 3.0% to 1.6%,
and on H0 from 2.3% to 1.2%. In the context of standard ΛCDM
these improvements lead to a measurement of the age of the
universe with 0.4% precision: t0 = 13.800 ± 0.061 Gyr.

The addition of the BAO prior helps to break some resid-
ual degeneracy between the primordial spectral index, ns, on
the one hand, and Ωch

2 and H0 on the other. Figure 4 shows
the two-dimensional parameter likelihoods for (ns,Ωch

2) and
(ns, H0) for the three data combinations considered to this point.
With only CMB data (black and blue contours) there remains
a weak degeneracy between ns and the other two. When the
BAO prior is added (red), it pushes Ωch

2 toward the upper
end of the range allowed by the CMB, and vice versa for
H0. Both of these results push ns toward the lower end of its
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Planck Collaboration: Cosmological parameters

Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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Zero if and only if P1 equals P2

≧0D(P1||P2) =

Z

S
dX P1(X) log

P1(X)

P2(X)

Invariant under parameter transformations

RELATIVE ENTROPY

Kullback & Leibler (1951)
Seehars et al (2014)

Constraints from Data A and B

Constraints from Data A
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NORMAL DISTRIBUTIONS & LINEAR MODEL

D(p2||p1) =
1

2

�
(µ1 � µ2)

T
⌃

�1
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�
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dDD(p2||p1)p(D)Expected relative entropy

Seehars et al (2014)
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Table 4
Six-parameter ΛCDM Fit: WMAP Plus External Dataa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+H0 +eCMB+BAO+H0

Fit parameters

Ωbh
2 0.02264 ± 0.00050 0.02229 ± 0.00037 0.02211 ± 0.00034 0.02244 ± 0.00035 0.02223 ± 0.00033

Ωch
2 0.1138 ± 0.0045 0.1126 ± 0.0035 0.1162 ± 0.0020 0.1106 ± 0.0030 0.1153 ± 0.0019

ΩΛ 0.721 ± 0.025 0.728 ± 0.019 0.707 ± 0.010 0.740 ± 0.015 0.7135+0.0095
−0.0096

109∆2
R 2.41 ± 0.10 2.430 ± 0.084 2.484+0.073

−0.072 2.396+0.079
−0.078 2.464 ± 0.072

ns 0.972 ± 0.013 0.9646 ± 0.0098 0.9579+0.0081
−0.0082 0.9690+0.0091

−0.0090 0.9608 ± 0.0080

τ 0.089 ± 0.014 0.084 ± 0.013 0.079+0.011
−0.012 0.087 ± 0.013 0.081 ± 0.012

Derived parameters

t0 (Gyr) 13.74 ± 0.11 13.742 ± 0.077 13.800 ± 0.061 13.702 ± 0.069 13.772 ± 0.059
H0 (km s−1 Mpc−1) 70.0 ± 2.2 70.5 ± 1.6 68.76 ± 0.84 71.6 ± 1.4 69.32 ± 0.80
σ8 0.821 ± 0.023 0.810 ± 0.017 0.822+0.013

−0.014 0.803 ± 0.016 0.820+0.013
−0.014

Ωb 0.0463 ± 0.0024 0.0449 ± 0.0018 0.04678 ± 0.00098 0.0438 ± 0.0015 0.04628 ± 0.00093
Ωc 0.233 ± 0.023 0.227 ± 0.017 0.2460 ± 0.0094 0.216 ± 0.014 0.2402+0.0088

−0.0087

zeq 3265+106
−105 3230 ± 81 3312 ± 48 3184 ± 70 3293 ± 47

zreion 10.6 ± 1.1 10.3 ± 1.1 10.0 ± 1.0 10.5 ± 1.1 10.1 ± 1.0

Notes. a ΛCDM model fit to WMAP nine-year data combined with a progression of external data sets. A complete list of parameter values for
this model, with additional data combinations, may be found at http://lambda.gsfc.nasa.gov/.

The improvement in the baryon density measurement is due
to more precise measurements of the Silk damping tail in the
power spectrum at l ! 1000; the improvements in Ωch

2 and
ΩΛ are due in part to improvements in the high-l TT data, but
also to the detection of CMB lensing in the SPT and ACT data
(Das et al. 2011a; van Engelen et al. 2012), which helps to
constrain Ωm by fixing the growth rate of structure between
z = 1100 and z = 1–2 (the peak in the lensing kernel). Taken
together, CMB data available at the end of the WMAP mission
produce a 1.6% measurement of Ωbh

2 and a 3.0% measurement
of Ωch

2.
The increased k-space lever arm provided by the high-l CMB

data improves the uncertainty on the scalar spectral index by
25%, giving ns = 0.9646 ± 0.0098, which implies a non-zero tilt
in the primordial spectrum (i.e., ns < 1) at 3.6σ . We examine
the implications of this measurement for inflation models in
Section 4.1.

If we assume a flat universe, which breaks the CMB’s
geometric degeneracy, then CMB data alone now provide a
2.3% measurement of the Hubble parameter, H0 = 70.5 ±
1.6 km s−1 Mpc−1, independent of the cosmic distance ladder.
As discussed in Section 3.4, this is consistent with the recent de-
termination of the Hubble parameter using the cosmic distance
ladder: H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al. 2011); we
explore the effect of adding this prior in Section 3.4. We relax
the assumption of flatness in Section 4.5.

We conclude by comparing our results for the ACT and SPT
foreground “nuisance” parameters to those found by the ACT
and SPT teams. For example, we find AACT

Poisson = 14.8+2.3
−2.4 while

the ACT team finds AACT
Poisson = 12.0 ± 1.9. (Note that we do not

expect perfect agreement because we use nine-year WMAP data
and we fit the clustered source amplitude jointly with SPT data,
unlike the ACT team’s treatment.) The ACT team concluded that
the ΛCDM cosmological model (fit to) the 148 GHz spectrum
(and the seven-year WMAP data), marginalized over SZ and
source power is a good fit to the data (Dunkley et al. 2011).
The complete set of foreground parameters fit to the ACT and
SPT data may be found at http://lambda.gsfc.nasa.gov/ for all
the models reported in this paper.

3.3. Adding BAO Data

Acoustic structure in the large-scale distribution of galaxies is
manifest on a co-moving scale of 152 Mpc, where the evolution
of matter fluctuations is largely within the linear regime. A
number of authors have studied the degree to which the acoustic
structure could be perturbed by nonlinear evolution (e.g., Seo &
Eisenstein 2005, 2007; Jeong & Komatsu 2006, 2009; Crocce &
Scoccimarro 2008; Matsubara 2008; Taruya & Hiramatsu 2008;
Padmanabhan & White 2009), and the effects are well below the
current measurement uncertainties. Because it is based on the
same well-understood physics that governs the CMB anisotropy,
we consider measurements of the BAO scale to be the next-
most robust cosmological probe after CMB fluctuations. The
ΛCDM parameters fit to CMB and BAO data are given in the
“+eCMB+BAO” column of Table 4.

Measurements of the tangential and radial BAO scale at
redshift z measure the effective distance DV (z), given in
Equation (1), in units of the sound horizon rs(zd ). This quantity is
primarily sensitive to the total matter and dark energy densities,
and to the current Hubble parameter. Since the BAO scale is
relatively insensitive to the baryon density, Ωbh

2, this parameter
does not improve significantly with the addition of the BAO
prior. However, the low-redshift distance information imposes
complementary constraints on the matter density and Hubble
parameter, improving the precision on Ωch

2 from 3.0% to 1.6%,
and on H0 from 2.3% to 1.2%. In the context of standard ΛCDM
these improvements lead to a measurement of the age of the
universe with 0.4% precision: t0 = 13.800 ± 0.061 Gyr.

The addition of the BAO prior helps to break some resid-
ual degeneracy between the primordial spectral index, ns, on
the one hand, and Ωch

2 and H0 on the other. Figure 4 shows
the two-dimensional parameter likelihoods for (ns,Ωch

2) and
(ns, H0) for the three data combinations considered to this point.
With only CMB data (black and blue contours) there remains
a weak degeneracy between ns and the other two. When the
BAO prior is added (red), it pushes Ωch

2 toward the upper
end of the range allowed by the CMB, and vice versa for
H0. Both of these results push ns toward the lower end of its
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WMAP: Bennett+ 2013 
eCMB: SPT (Keisler+ 2011) and ACT (Das+ 2011) 
BAO: 6dFGS (Beutler+ 2011), SDSS (Padmanabhan+ 2012, Anderson+ 2012), and WiggleZ (Blake+ 2012) 
H0: Riess+ 2009

1

TABLE I. Relative entropy estimates in bits assuming Gaussian posteriors and a linear model.

Data combinationa D hDi S S/�(D)

WMAP ! WMAP + eCMB 2.1 1.7 0.4 0.5

WMAP + eCMB ! WMAP + eCMB + BAO 1.3 1.0 0.3 0.8

WMAP + eCMB ! WMAP + eCMB + H0 0.4 0.3 0.1 0.1

WMAP + eCMB ! WMAP + eCMB + BAO + H0 0.9 1.1 -0.2 -0.2

a WMAP = full WMAP 9 data; eCMB = SPT and ACT temperature power spectra; BAO = 6dFGS

(z = 0.1), SDSS-DR7 (z = 0.35, 0.57), and WiggleZ (z = 0.44, 0.60, 0.73) data; H0 = HST Key Project

data
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Table 4
Six-parameter ΛCDM Fit: WMAP Plus External Dataa
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109∆2
R 2.41 ± 0.10 2.430 ± 0.084 2.484+0.073
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−0.0082 0.9690+0.0091

−0.0090 0.9608 ± 0.0080

τ 0.089 ± 0.014 0.084 ± 0.013 0.079+0.011
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t0 (Gyr) 13.74 ± 0.11 13.742 ± 0.077 13.800 ± 0.061 13.702 ± 0.069 13.772 ± 0.059
H0 (km s−1 Mpc−1) 70.0 ± 2.2 70.5 ± 1.6 68.76 ± 0.84 71.6 ± 1.4 69.32 ± 0.80
σ8 0.821 ± 0.023 0.810 ± 0.017 0.822+0.013

−0.014 0.803 ± 0.016 0.820+0.013
−0.014

Ωb 0.0463 ± 0.0024 0.0449 ± 0.0018 0.04678 ± 0.00098 0.0438 ± 0.0015 0.04628 ± 0.00093
Ωc 0.233 ± 0.023 0.227 ± 0.017 0.2460 ± 0.0094 0.216 ± 0.014 0.2402+0.0088

−0.0087

zeq 3265+106
−105 3230 ± 81 3312 ± 48 3184 ± 70 3293 ± 47

zreion 10.6 ± 1.1 10.3 ± 1.1 10.0 ± 1.0 10.5 ± 1.1 10.1 ± 1.0

Notes. a ΛCDM model fit to WMAP nine-year data combined with a progression of external data sets. A complete list of parameter values for
this model, with additional data combinations, may be found at http://lambda.gsfc.nasa.gov/.

The improvement in the baryon density measurement is due
to more precise measurements of the Silk damping tail in the
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2 and
ΩΛ are due in part to improvements in the high-l TT data, but
also to the detection of CMB lensing in the SPT and ACT data
(Das et al. 2011a; van Engelen et al. 2012), which helps to
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produce a 1.6% measurement of Ωbh

2 and a 3.0% measurement
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25%, giving ns = 0.9646 ± 0.0098, which implies a non-zero tilt
in the primordial spectrum (i.e., ns < 1) at 3.6σ . We examine
the implications of this measurement for inflation models in
Section 4.1.

If we assume a flat universe, which breaks the CMB’s
geometric degeneracy, then CMB data alone now provide a
2.3% measurement of the Hubble parameter, H0 = 70.5 ±
1.6 km s−1 Mpc−1, independent of the cosmic distance ladder.
As discussed in Section 3.4, this is consistent with the recent de-
termination of the Hubble parameter using the cosmic distance
ladder: H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al. 2011); we
explore the effect of adding this prior in Section 3.4. We relax
the assumption of flatness in Section 4.5.
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and SPT teams. For example, we find AACT
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−2.4 while

the ACT team finds AACT
Poisson = 12.0 ± 1.9. (Note that we do not

expect perfect agreement because we use nine-year WMAP data
and we fit the clustered source amplitude jointly with SPT data,
unlike the ACT team’s treatment.) The ACT team concluded that
the ΛCDM cosmological model (fit to) the 148 GHz spectrum
(and the seven-year WMAP data), marginalized over SZ and
source power is a good fit to the data (Dunkley et al. 2011).
The complete set of foreground parameters fit to the ACT and
SPT data may be found at http://lambda.gsfc.nasa.gov/ for all
the models reported in this paper.

3.3. Adding BAO Data

Acoustic structure in the large-scale distribution of galaxies is
manifest on a co-moving scale of 152 Mpc, where the evolution
of matter fluctuations is largely within the linear regime. A
number of authors have studied the degree to which the acoustic
structure could be perturbed by nonlinear evolution (e.g., Seo &
Eisenstein 2005, 2007; Jeong & Komatsu 2006, 2009; Crocce &
Scoccimarro 2008; Matsubara 2008; Taruya & Hiramatsu 2008;
Padmanabhan & White 2009), and the effects are well below the
current measurement uncertainties. Because it is based on the
same well-understood physics that governs the CMB anisotropy,
we consider measurements of the BAO scale to be the next-
most robust cosmological probe after CMB fluctuations. The
ΛCDM parameters fit to CMB and BAO data are given in the
“+eCMB+BAO” column of Table 4.

Measurements of the tangential and radial BAO scale at
redshift z measure the effective distance DV (z), given in
Equation (1), in units of the sound horizon rs(zd ). This quantity is
primarily sensitive to the total matter and dark energy densities,
and to the current Hubble parameter. Since the BAO scale is
relatively insensitive to the baryon density, Ωbh

2, this parameter
does not improve significantly with the addition of the BAO
prior. However, the low-redshift distance information imposes
complementary constraints on the matter density and Hubble
parameter, improving the precision on Ωch

2 from 3.0% to 1.6%,
and on H0 from 2.3% to 1.2%. In the context of standard ΛCDM
these improvements lead to a measurement of the age of the
universe with 0.4% precision: t0 = 13.800 ± 0.061 Gyr.

The addition of the BAO prior helps to break some resid-
ual degeneracy between the primordial spectral index, ns, on
the one hand, and Ωch

2 and H0 on the other. Figure 4 shows
the two-dimensional parameter likelihoods for (ns,Ωch

2) and
(ns, H0) for the three data combinations considered to this point.
With only CMB data (black and blue contours) there remains
a weak degeneracy between ns and the other two. When the
BAO prior is added (red), it pushes Ωch

2 toward the upper
end of the range allowed by the CMB, and vice versa for
H0. Both of these results push ns toward the lower end of its
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Planck Collaboration: Cosmological parameters

Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-

22

Planck Collaboration: Cosmological parameters

Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
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The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
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data also strongly constrains the net contribution from the kSZ
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�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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WMAP 9 
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TABLE I. Numerical relative entropy estimates in bits for considered combinations of CMB data. For the Gaussian approxi-
mation, the relative entropy D is split into expected relative entropy hDi and surprise S = D�hDi. Furthermore, the expected
spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
strategy, hDi and �(D) are given by (16) and (17) when adding data, by (24) and (25) when replacing data, and by (A34) and
(A35) for partial replacement. For joint analyses, hDi and �(D) are calculated as if the data was added independently. The
p-value is an estimate for the prior probability for observing a surprise that is greater or equal (less or equal) than S if S is
greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combinationa Updating Gaussian approximationb Monte Carlo

schemec D hDi S S/�(D) p-valued estimate of De

BOOMERANG ! WMAP 9 replace 22.5 18.4 4.1 1.6 0.07 20.9± 0.6

WMAP 3 ! WMAP 5 joint 7.7 2.2 5.5 5.3 0.001 10.5± 0.9

WMAP 5 ! WMAP 7 joint 1.4 1.0 0.4 0.6 0.2 1.5± 0.7

WMAP 7 ! WMAP 9 joint 1.5 1.2 0.3 0.4 0.3 1.3± 0.7

WMAP 9 ! WMAP 9 + SPT add 4.3 2.1 2.2 2.1 0.04 4.6± 0.7

WMAP 9 ! Planck + WP part 29.8 7.9 21.9 6.5 0.0002 —

WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —

Planck ! Planck + WP add 1.2 2.2 �0.9 �0.9 0.08 —

a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.

Relative entropy captures both changes in confidence
volumes and location of the regions of the posteriors.
In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the
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WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —
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a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.

Relative entropy captures both changes in confidence
volumes and location of the regions of the posteriors.
In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the

Seehars et al (2014)

BOOMERANG: MacTavish et al. (2003) 
WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), 
Larson et al. (2011), and Bennett et al. (2013) 
WP: WMAP 9 polarisation data 
SPT: Story et al. (2013) 
Planck: Ade et al. (2013)
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TABLE I. Numerical relative entropy estimates in bits for considered combinations of CMB data. For the Gaussian approxi-
mation, the relative entropy D is split into expected relative entropy hDi and surprise S = D�hDi. Furthermore, the expected
spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
strategy, hDi and �(D) are given by (16) and (17) when adding data, by (24) and (25) when replacing data, and by (A34) and
(A35) for partial replacement. For joint analyses, hDi and �(D) are calculated as if the data was added independently. The
p-value is an estimate for the prior probability for observing a surprise that is greater or equal (less or equal) than S if S is
greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combinationa Updating Gaussian approximationb Monte Carlo

schemec D hDi S S/�(D) p-valued estimate of De

BOOMERANG ! WMAP 9 replace 22.5 18.4 4.1 1.6 0.07 20.9± 0.6

WMAP 3 ! WMAP 5 joint 7.7 2.2 5.5 5.3 0.001 10.5± 0.9

WMAP 5 ! WMAP 7 joint 1.4 1.0 0.4 0.6 0.2 1.5± 0.7

WMAP 7 ! WMAP 9 joint 1.5 1.2 0.3 0.4 0.3 1.3± 0.7

WMAP 9 ! WMAP 9 + SPT add 4.3 2.1 2.2 2.1 0.04 4.6± 0.7

WMAP 9 ! Planck + WP part 29.8 7.9 21.9 6.5 0.0002 —

WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —

Planck ! Planck + WP add 1.2 2.2 �0.9 �0.9 0.08 —

a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.

Relative entropy captures both changes in confidence
volumes and location of the regions of the posteriors.
In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the
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spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
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p-value is an estimate for the prior probability for observing a surprise that is greater or equal (less or equal) than S if S is
greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combinationa Updating Gaussian approximationb Monte Carlo
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WMAP 3 ! WMAP 5 joint 7.7 2.2 5.5 5.3 0.001 10.5± 0.9

WMAP 5 ! WMAP 7 joint 1.4 1.0 0.4 0.6 0.2 1.5± 0.7

WMAP 7 ! WMAP 9 joint 1.5 1.2 0.3 0.4 0.3 1.3± 0.7

WMAP 9 ! WMAP 9 + SPT add 4.3 2.1 2.2 2.1 0.04 4.6± 0.7

WMAP 9 ! Planck + WP part 29.8 7.9 21.9 6.5 0.0002 —

WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —

Planck ! Planck + WP add 1.2 2.2 �0.9 �0.9 0.08 —

a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.

Relative entropy captures both changes in confidence
volumes and location of the regions of the posteriors.
In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the

BOOMERANG: MacTavish et al. (2003) 
WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), 
Larson et al. (2011), and Bennett et al. (2013) 
WP: WMAP 9 polarisation data 
SPT: Story et al. (2013) 
Planck: Ade et al. (2013) Seehars et al (2014)
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TABLE I. Numerical relative entropy estimates in bits for considered combinations of CMB data. For the Gaussian approxi-
mation, the relative entropy D is split into expected relative entropy hDi and surprise S = D�hDi. Furthermore, the expected
spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
strategy, hDi and �(D) are given by (16) and (17) when adding data, by (24) and (25) when replacing data, and by (A34) and
(A35) for partial replacement. For joint analyses, hDi and �(D) are calculated as if the data was added independently. The
p-value is an estimate for the prior probability for observing a surprise that is greater or equal (less or equal) than S if S is
greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combinationa Updating Gaussian approximationb Monte Carlo

schemec D hDi S S/�(D) p-valued estimate of De

BOOMERANG ! WMAP 9 replace 22.5 18.4 4.1 1.6 0.07 20.9± 0.6

WMAP 3 ! WMAP 5 joint 7.7 2.2 5.5 5.3 0.001 10.5± 0.9

WMAP 5 ! WMAP 7 joint 1.4 1.0 0.4 0.6 0.2 1.5± 0.7

WMAP 7 ! WMAP 9 joint 1.5 1.2 0.3 0.4 0.3 1.3± 0.7

WMAP 9 ! WMAP 9 + SPT add 4.3 2.1 2.2 2.1 0.04 4.6± 0.7

WMAP 9 ! Planck + WP part 29.8 7.9 21.9 6.5 0.0002 —

WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —

Planck ! Planck + WP add 1.2 2.2 �0.9 �0.9 0.08 —

a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.
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In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the
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TABLE I. Numerical relative entropy estimates in bits for considered combinations of CMB data. For the Gaussian approxi-
mation, the relative entropy D is split into expected relative entropy hDi and surprise S = D�hDi. Furthermore, the expected
spread �(D) of D around its mean hDi and the significance of the surprise S/�(D) are given. Depending on the analysis
strategy, hDi and �(D) are given by (16) and (17) when adding data, by (24) and (25) when replacing data, and by (A34) and
(A35) for partial replacement. For joint analyses, hDi and �(D) are calculated as if the data was added independently. The
p-value is an estimate for the prior probability for observing a surprise that is greater or equal (less or equal) than S if S is
greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combinationa Updating Gaussian approximationb Monte Carlo

schemec D hDi S S/�(D) p-valued estimate of De

BOOMERANG ! WMAP 9 replace 22.5 18.4 4.1 1.6 0.07 20.9± 0.6
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WMAP 5 ! WMAP 7 joint 1.4 1.0 0.4 0.6 0.2 1.5± 0.7

WMAP 7 ! WMAP 9 joint 1.5 1.2 0.3 0.4 0.3 1.3± 0.7

WMAP 9 ! WMAP 9 + SPT add 4.3 2.1 2.2 2.1 0.04 4.6± 0.7

WMAP 9 ! Planck + WP part 29.8 7.9 21.9 6.5 0.0002 —

WMAP 9 + SPT ! Planck + WP + SPT part 27.8 6.6 21.2 6.5 0.0002 —

Planck ! Planck + WP add 1.2 2.2 �0.9 �0.9 0.08 —

a WMAP 9 = full WMAP 9 data (same for WMAP 3, 5, and 7), WP = WMAP 9 polarization data, Planck = Planck temperature data,
SPT = SPT temperature data, BOOMERANG = full BOOMERANG data

b The errors of the Gaussian estimates for D, hDi, S, and �(D) are of order 0.1.
c add = adding data, replace = replacing data, part = partial replacement of data, joint = joint analysis of data
d See appendix A 3 for details on the estimation of the p-value.
e The results from the Monte Carlo integration are stated including the estimation uncertainty.

by comparing it to the Monte Carlo integration. Fur-
thermore, the SPT likelihood is a normal distribution in
the data. As such, the requirements from section III are
fulfilled to good approximation and splitting D into hDi
and S according to equations (16) and (18) is justified.
The information gain here is 4.3 bits with 2.1 bits com-
ing from hDi, which is comparable to the update from
WMAP 5 to WMAP 9, and a surprise at the 2�(D) level.

4. Impact of Planck

WMAP temperature data and Planck observations are
strongly correlated. Hence, in the analysis shown in Ta-
ble I the WMAP data is partially replaced by the temper-
ature data from Planck while WMAP polarization (WP)
data (with and without SPT data) is used in both anal-
yses. When Planck is added to previous data (with and
without SPT) there are large gains in relative entropy
(29.8 and 27.8 bits). When studying the decomposition,
however, it can be seen that the contribution from hDi to
the total entropy gain is dominated by the surprise part
(21.9 and 21.2 bits), though measuring a considerable im-
provement in precision at 7.9 and 6.6 bits. Furthermore,
the surprise is at levels greater than 6�(D) correspond-
ing to a p-value of 0.0002. The results shown in Figure
4 support these findings and show that though the er-
ror contours do decrease considerably with the addition
of Planck constraints another apparent e↵ect is the shift
of the confidence intervals. This in fact echoes the re-
sults of the Planck Collaboration et al. [8] demonstrating
comparable shifts. Table I also shows the e↵ect on the

parameters when adding WMAP polarization data to the
Planck measurements. The findings show that WMAP
polarization data adds 1.2 bits and that the surprise is
negative, i.e. the means shift less than expected.

V. CONCLUSIONS

In order to compare the cosmological parameter con-
straints from di↵erent experiments, a tool for quantifying
changes in posterior distributions on the full parameter
space is needed. Motivated from information theory, the
concept of relative entropy measures di↵erences between
distributions in a parametrization independent way and
is therefore able to quantify the information gained from
new data. In this work, relative entropy is used to de-
velop a new tool for comparing the parameter constraints
of the ⇤CDM model from di↵erent CMB surveys. Two
ways of combining data from di↵erent experiments are
discussed: complementary datasets that can be analyzed
sequentially and correlated measurements that replace
earlier datasets.

Relative entropy captures both changes in confidence
volumes and location of the regions of the posteriors.
In the regime of Gaussian likelihoods and linear mod-
els, these contributions can even be distinguished as an
expected relative entropy measuring di↵erences in confi-
dence volume and a surprise coming from shifts in pa-
rameter space. This Gaussian regime is furthermore at
least a good approximation for CMB data analysis. The
notions of expected relative entropy and surprise turn
the relative entropy into a powerful diagnostic for the

BOOMERANG: MacTavish et al. (2003) 
WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), 
Larson et al. (2011), and Bennett et al. (2013) 
WP: WMAP 9 polarisation data 
SPT: Story et al. (2013) 
Planck: Ade et al. (2013) Seehars et al (2014)
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Blanco telescope at CTIO 
• 4m primary focus 
• built new dedicated camera - 570 megapixel 
• 2.2 deg2 field of view 
• thick CCDs for near infrared light 

Two multiband surveys: 
• 5000 deg sq. grizY to mag 24 
• 30 deg2 deep survey, 6 days cadence 

Survey using four complementary techniques: 
1. Cluster counts 
2. Weak gravitational lensing 
3. Large-scale structure 
4. Supernovae 

International collaboration:  
 300 members, 26 institutions, 7 countries 

Survey: 2013-2018, 525 nights

Overview
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The Dark Energy Survey

• •  Two surveys: 
• Wide fields - 5000 deg2 in grizY to g=24 

• SN 1a - repeated visits over 30 deg2  

• Built new camera for  
CTIO Blanco telescope 
• 570 Mpixels 
• 3 deg2 FOV 
• Facility instrument 

• •  Five-year Survey 
• 525 nights (Aug - Feb) 
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Footprint

year 0 (science validation) - 180 deg2, 10 tilings (full depth) 
year 1 - 2500 deg2, 4 tilings, overlapping STP, VHS, BOSS 
5 years - 5000 deg2
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airmass sky brightness

exposure time PSF ellipticity e1 PSF ellipticity e2 seeing [pixels]

background SNR limiting magnitude

Tracking Systematics Maps 
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Shape Measurement Problems

Approach till now Our new approach

Generic Shape  
measurement methods

Specific analysis need only work for 
specific data (data centric)

Calculate calibration factor (minimising 
simulations)

Simulation explicitly at the heart of 
analysis method (empirical calibrations)

Trend towards more complex methods Simplest possible method that we can get 
away with (speed)

Intrinsic galaxy
(shape unknown)

Gravitational lensing 
causes a shear (g)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise

The Forward Process.
Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

Intrinsic star
(point source)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise
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Toy Model: Measuring the Size of a 2D Gaussian
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Measurement Biases

Refregier, AA, + 2013
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Shape Measurement Problems

Approach till now Our new approach - MCCL

Generic Shape  
measurement methods

Specific analysis need only work for 
specific data (data centric)

Calculate calibration factor (minimising 
simulations)

Simulation explicitly at the heart of 
analysis method (empirical calibrations)

Trend towards more complex methods Simplest possible method that we can get 
away with (speed)

Intrinsic galaxy
(shape unknown)

Gravitational lensing 
causes a shear (g)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise

The Forward Process.
Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

Intrinsic star
(point source)

Atmosphere and telescope
cause a convolution

Detectors measure
a pixelated image

Image also 
contains noise
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Subaru UFig

Ultra Fast Image Generator (UFig)
Speed the driving factor 

As fast as SExtractor (or faster) 
Subaru Image (0.25 
deg2,R~26,10k×8k) generated in:  

30sec on a laptop 
30μsec per galaxy

HOPE: A Python Just-In-Time compiler  
for astrophysical computations

Akeret et al 2014

Table 2: Benchmarks times relative to C++. Best results are highlighted in bold.

Python

(NumPy) Numba Cython
Nuitka

(NumPy)
PyPy

(NumPy)
numexpr
(8 cores) HOPE C++

Fibonacci 57.4 65.7a 1.1 26.7 21.1 — 1.1 1.0
Quicksort 79.4 —b 4.6 61.0 45.8 — 1.1 1.0
Pi sum 27.2 1.0 1.1 13.0 1.0 — 1.0 1.0
10thorder 2.6 2.2 2.1 1.2 12.1 1.4 1.1 1.0
Simplify 1.4 1.5ab 1.8 1.4 23.2 0.6 0.015 1.0
Pairwise
distance

1357.8
(8.7) 1.8 1.0 1247.7

(9.5)
277.8
(60.4) — 1.7 1.0

Star PSF 265.4 250.4a 46.2 234.6 339.5 — 2.2 1.0
a Numba was not able to compile down to LLVM
b Compilation attempt resulted in Internal error

Numba, which is the only package besides HOPE that does not require the user to alter the code or change the runtime
environment, shows good performance as soon the package is able to compile down to LLVM. As the project is also
under active development we expect that further support and features will be implemented soon. Focusing on a
subset of the Pyhton language enables HOPE to generate C++ code targeted towards high execution performance
without the need for the user to modify the Python implementation. The performance differences compared to the
C++ implementation arise through small overheads introduced by the code generation process. It has to be noted that
HOPE is still under active development and many language features of Python are currently not supported. In cases
where HOPE is not able to translate the code it will provide the user the according information including the line of
code, which caused the problem. In these cases exploring possible improvements in performance through Cython
would be an option. This requires the user manually adapt the code. For an experienced user gains are likely to be
possible.

7. Conclusion

Python is becoming increasingly popular in the science community due to the large variety of freely available
packages and the simplicity and versatility of the language. However, a drawback of Python is the low runtime
and execution performance of the language. For many use cases this is acceptable but for large simulations and
numerical computations, such as those used in astrophysics and cosmology, accelerating the performance of codes
is crucial. This can be achieved by parallelizing the computation on multicore CPU architectures. Alternatively and
complementarily, the single thread performance of the code can be optimized. Rewriting the application in C (or other
compiled languages) can be time consuming and reduces the readability and maintainability of the code. A set of
solutions exists in the Python landscape to improve the performance, such as alternative interpreters, static Python
code compiler or just-in-time compilers. We find that some those solution are intrusive i.e. they require the user to
change the code and some are not able to fully achieve the speed of a corresponding C/C++ implementation.

To address these limitations, we introduced HOPE, a specialised Python just-in-time compiler able to apply nu-
merical optimisation to mathematical expressions during the compilation process. We conducted different benchmarks
to assess its performance and compared it with existing solutions. The tests show that HOPE is able to improve the
performance compared to plain Python by a factor of 2.4× - 119× depending on the benchmark scenario. We find
that the performance of our package is comparable to that of C++. Some of the other packages that we tested are
also able to improve the execution speed but do not increase the performance in specialized test cases such as the
computation of a ground-based point spread function. We have used our package to improve the performance of
the PyCosmo project [9] as well as to be able to rewrite the Ultra fast image generator (UFig) C++ package[10] in
Python without compromising its performance. We plan to apply HOPE to further projects and therefore continuously
increase its supported language features and improve its optimization capabilities. To simplify the installation we are
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Fig. 1.— Comparison of a DES SV image (DES0441-4414 ; left) and a UFig simulated image after CL1 (right). A 4 arcmin2 segment of
the total 0.5 deg2 images is shown. The same color scale has been applied to both images.

Fig. 2.— Histogram of the pixel values in ADUs for DES0441-

4414 (red) and a simulated UFig image (blue) with the fiducial
configuration after CL1. The solid lines show the counts of all the
pixels in the image. SE’s segmentation map assigns pixels either
to objects or the background. The dashed respectively dotted lines
show the corresponding pixel counts.

6. RESULTS

6.1. Control Loop 1

Excerpts of the DES0441-4414 image and the UFig

image simulated with the fiducial configuration are dis-
played in Fig. 1. They apper similar visually. For a
quantitative comparison, Figures 2-4 show the diagnostic
plots for the DES image and the UFig image. The com-
bined �2

red

of the individual values for each diagnostic has
a value of 1.06. Thus, the fiducial configuration we find is
a good fit to the data in the chosen diagnostics. To avoid
combining very di↵erent �2

red

values, we assure that the
individual �2

red

values are also close to 1. For the fiducial
configuration, the individual ones for each diagnostic are
within

���2
red

� 1
�� < 0.4 (see Appendix). By varying the

binning scheme we have checked that we recover similar

fiducial configurations and confidence limits.
Fig. 2 shows the histograms of pixel values for all the

pixels in both images (solid). The overall behavior agrees
well (�2

red

⇡ 1.38). The histograms agree well around the
peak, with the distribution of the pixels in the UFig im-
age being slightly broader. The pixels are furthermore
divided using SE’s segmentation map into two sets to al-
low us to understand di↵erences and similarities better.
One set contains all the pixels associated with identified
objects (dashed), and the other those associated with
the background (dotted). The histograms of pixels asso-
ciated with objects agree well (�2

red

⇡ 1.10). We however
observe a low-level discrepancy in the background pixel
histograms at high pixel values. While our noise model
including Gaussian noise in every pixels seems to be a
good approximation around the peak of the histogram,
it does not account for the background pixels with larger
positive pixel values. As the number of background pix-
els is small compared to the total number of pixels with
pixel values of & 30 ADUs, those di↵erences do not
a↵ect the value of �2

red

significantly.
Fig. 3 displays the magnitude-size plane of objects

identified by SE in both the simulation and the data.
Overall, the distributions resemble each other qualita-
tively and quantitatively (�2

red

⇡ 1.26). In particular,
the main bulk of the galaxy distributions, the location
of the stellar loci, and the saturation turno↵s all agree
well. Some slight di↵erences can however be noted. The
dispersion around the stellar locus is larger in the DES
image, which is due to our simple PSF model, which is
constant in size. Furthermore, the shapes of the density
contour lines and the magnitude limits are slightly di↵er-
ent. We believe that changes in the galaxy model would
improve this.

The di↵erent magnitude limits and the discrepancies in
the background-only histograms of pixel values call for
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Fig. 3.— Distribution of r -band magnitudes (MAG BEST ) and the sizes in pixels (FLUX RADIUS) of objects identified by SE. Isodensity

contours of the number of objects track the shape of the distribution. Red is the DES0441-4414 and blue is a simulated UFig image with the
fiducial configuration after CL1. Histograms on the right and the bottom show the projected distributions in di↵erent size and magnitude
bins. The black marks denote the di↵erence between the red and blue histograms in every bin.

more noise in the simulations. Increasing the width of
the Gaussian background would on the other hand how-
ever aggravate the discrepancy around the background
peak. To resolve this tension (see Appendix), a more
sophisticated background model easing some of the
simplifying assumptions on the properties of the
background is needed (for an overview of possi-
ble extensions see Rowe et al. 2014). An analysis
of the two-point correlation function will reveal
structures in the background not yet modelled
and will serve as an additional diagnostic.

The ellipticity planes in the di↵erent magnitude bins
are shown in Fig. 4. Due to the ellipticity introduced
by the PSF, the mean of the e

i

-distributions is shifted
towards positive values and thus there is a small asym-
metry. Note that the galaxies we include in the cali-
bration of the shear measurement are mainly in the two
brighter magnitude bins where the distributions match
well (�2

red

⇡ 1.35 and �2
red

⇡ 0.63). In the brightest
magnitude bin, the distributions deviate slightly for val-
ues of |e

i

| > 0.3. We believe this is caused by our choice
of the intrinsic ellipticity distributions being normal in
e
i

(see Eq. 3). Changes in the intrinsic ellipticity dis-

tribution can improve the agreement between the data
and the simulation. In the faintest magnitude bin, the
distributions do not match well (�2

red

⇡ 0.21). As noted
above, there seem to be more faint objects detected in
the UFig image. Furthermore, there are di↵erences be-
tween the ellipticity distributions in this bin. This can be
attributed to the simple PSF model we choose, as the ob-
jects in this bin are mostly dominated by the PSF. As we
apply a S/N-cut of 15 (corresponds to mag ⇠ 23),
di↵erences in the faintest magnitude are poten-
tially not relevant for the calibration of the shear
measurement. Nevertheless, it is only by looking at the
results of a future, more rigorous MCCL analysis includ-
ing parameters describing the PSF model that we can
assess whether the di↵erences in the faintest magnitude
bin are relevant for shear measurement.

6.2. Control Loops 2 and 3

We perform a tolerance analysis of the shear calibra-
tion, as described in Section 5.3. We vary the same six
parameters as in Section 5.1, mag0, �, ✓, �

N

, e1,rms

,
and e2,rms

. The allowed parameter ranges by the data
are given by the analysis performed in Section 6.1 (see

6

Fig. 1.— Comparison of a DES SV image (DES0441-4414 ; left) and a UFig simulated image after CL1 (right). A 4 arcmin2 segment of
the total 0.5 deg2 images is shown. The same color scale has been applied to both images.
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Fig. 2.— Histogram of the pixel values in ADUs for DES0441-

4414 (red) and a simulated UFig image (blue) with the fiducial
configuration after CL1. The solid lines show the counts of all the
pixels in the image. SE’s segmentation map assigns pixels either
to objects or the background. The dashed respectively dotted lines
show the corresponding pixel counts.

6. RESULTS

6.1. Control Loop 1

Excerpts of the DES0441-4414 image and the UFig

image simulated with the fiducial configuration are dis-
played in Fig. 1. They apper similar visually. For a
quantitative comparison, Figures 2-4 show the diagnostic
plots for the DES image and the UFig image. The com-
bined �2

red

of the individual values for each diagnostic has
a value of 1.06. Thus, the fiducial configuration we find is
a good fit to the data in the chosen diagnostics. To avoid
combining very di↵erent �2

red

values, we assure that the
individual �2

red

values are also close to 1. For the fiducial
configuration, the individual ones for each diagnostic are
within

���2
red

� 1
�� < 0.4 (see Appendix). By varying the

binning scheme we have checked that we recover similar

fiducial configurations and confidence limits.
Fig. 2 shows the histograms of pixel values for all the

pixels in both images (solid). The overall behavior agrees
well (�2

red

⇡ 1.38). The histograms agree well around the
peak, with the distribution of the pixels in the UFig im-
age being slightly broader. The pixels are furthermore
divided using SE’s segmentation map into two sets to al-
low us to understand di↵erences and similarities better.
One set contains all the pixels associated with identified
objects (dashed), and the other those associated with
the background (dotted). The histograms of pixels asso-
ciated with objects agree well (�2

red

⇡ 1.10). We however
observe a low-level discrepancy in the background pixel
histograms at high pixel values. While our noise model
including Gaussian noise in every pixels seems to be a
good approximation around the peak of the histogram,
it does not account for the background pixels with larger
positive pixel values. As the number of background pix-
els is small compared to the total number of pixels with
pixel values of & 30 ADUs, those di↵erences do not
a↵ect the value of �2

red

significantly.
Fig. 3 displays the magnitude-size plane of objects

identified by SE in both the simulation and the data.
Overall, the distributions resemble each other qualita-
tively and quantitatively (�2

red

⇡ 1.26). In particular,
the main bulk of the galaxy distributions, the location
of the stellar loci, and the saturation turno↵s all agree
well. Some slight di↵erences can however be noted. The
dispersion around the stellar locus is larger in the DES
image, which is due to our simple PSF model, which is
constant in size. Furthermore, the shapes of the density
contour lines and the magnitude limits are slightly di↵er-
ent. We believe that changes in the galaxy model would
improve this.

The di↵erent magnitude limits and the discrepancies in
the background-only histograms of pixel values call for
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Fig. 4.— Ellipticity distributions for objects identified by SE in DES0441-4414 (red) and a simulated UFig image with the fiducial
configuration after CL1 (blue) are shown. The objects are split up into three di↵erent r -band magnitude (MAG BEST ) bins, such that
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TABLE 1
Values of the coefficients ↵i and �i (see Eq. 12) and
1�-confidence limits for the PSF-uncorrected and
PSF-corrected shape measures for the fiducial

configuration used in Section 6

Coe�cient PSF-uncorrected PSF-corrected

↵1 0.193± 0.001 0.369± 0.002
↵2 0.190± 0.001 0.363± 0.002
�1 (4.40± 0.01) · 10�3 (0.82± 0.02) · 10�3

�2 (2.86± 0.01) · 10�3 (1.10± 0.03) · 10�3

Appendix). They correspond to the 95% confidence lim-
its we take as a measure of statistical consistency of dif-
ferent configurations. For each of these parameters, we
compute the change in calibration relative to the fiducial
model (see Table 1) at six di↵erent points around the
fiducial configuration. For every data point we simulate
an area of 1000 deg2. Thus, to calibrate the shear mea-
surement with the precision required for 200 deg2 survey,
we need to simulate 37000 deg2.

Figures 5 and 6 show how uncertainties in the input pa-
rameters result in multiplicative biases. We use the two

shape measures described by Equations 8-11. We find
that, for the six parameters we vary, the PSF-corrected
shape measurement calibrated through the MCCL frame-
work is robust enough for a DES SV-like 200 deg2 sur-
vey in terms of the requirement described in Section 2.
As discussed in (Refregier & Amara 2013) un-
known systematics or e↵ects not yet included in
the simulations may a↵ect the shear measure-
ment. However, the MCCL approach provides a
framework for testing aspects of the measurement
process that are in doubt. The PSF-uncorrected
shape measurement does not perform as well as the
PSF-corrected one, and lies slightly outside the tol-
erance band in some parameters. To make statements
about whether the calibration scheme is robust enough
for a 5-year DES-like 5000 deg2-survey in the parameters
varied, a larger area needs to be simulated to increase the
accuracy of the calibration. Furthermore, as described in
Section 2, achieving this new target requires refinements
on the MCCL framework.

Figures 7 and 8 show the resulting additive biases. For
the parameters considered, both shape measures already
even satisfy the requirements for a full DES-like survey
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Fig. 6.— Multiplicative bias in the measurement of �2. Similar to Fig. 5.
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Fig. 20.— Tangential shear around stars for IM3SHAPE
(blue) and NGMIX (red). Stars are split into to two
bins of i-band magnitude, where “bright” means 14 <

m

i

< 18.3 and “faint” means 18.3 < m

i

< 22.
The faint sample includes stars used for PSF modeling;
bright stars are excluded to avoid the brighter-fatter
effect (cf. §4.2). Shaded regions represent 1� shape
noise uncertainty, while error bars are from jackknif-
ing the stars.

8.2.3. Tangential shear around stars

If the PSF correction is incomplete, there may
also be a residual signal seen in the mean tangential
shear around stars, which could potentially contam-
inate galaxy-galaxy lensing studies. To test for this,
we measure the tangential shear around the positions
of stars in both IM3SHAPE and NGMIX for “bright”
(14 < m

i

< 18.3) and “faint” (18.3 < m

i

< 22)
stellar populations. In all cases the signal, shown in
Figure 20, is consistent with zero. The shape noise
uncertainty is shown as the shaded regions. The error
bars are jackknife uncertainty estimates.

The test using the faint stars primarily checks for
effects related to PSF interpolation and PSF modeling.
The bright stars are not themselves used to constrain
the PSF model (cf. Figure 6), so these stars instead
check for problems related to deblending and sky es-
timation errors in the outskirts of bright stellar halos.
We see no evidence of any systematic errors around
either set of stars.

8.3. Galaxy Property Tests

There are many properties of the galaxy images that
should be independent of the shear, but which in prac-
tice can be correlated with systematic errors in the

Fig. 21.— The mean galaxy shear as a function of
the signal-to-noise for IM3SHAPE (top) and NGMIX
(bottom). For IM3SHAPE we test against (S/N)

w

(cf. equation 7-3), which is one of the parameters used
for the calibration, so it includes corrections for se-
lection bias. For NGMIX, we test against (S/N)

r

(cf. equation 7-4), which does not induce any signif-
icant selection bias from the binning.

shear measurement. For example, some of the prop-
erties we tested during the course of our analysis were:
the size of the postage stamp, the number of neigh-
bors being masked, the fraction of the stamp area being
masked, the estimated bulge-to-disk ratio, the galaxy’s
signal-to-noise, and the galaxy size. These were all
extremely helpful diagnostic tools during the analy-
sis, but here we only present the final two, which ini-
tially showed evidence of systematic errors and took
the most effort to resolve.

Using S/N or the galaxy size for selections is quite
natural, since estimating the shear for small, faint
galaxies is more challenging than for large, bright
galaxies. However, measurements of these quantities
can be correlated with the galaxy ellipticity, and thus
an applied shear. Binning the data for the null test by
these properties can thus induce selection effects and
produce a net mean spurious ellipticity. This was al-
ready discussed in §7.2 with respect to S/N . We need
to do something similar to construct a proper null test
for the galaxy size.

8.3.1. Galaxy signal-to-noise

The null test for checking that the galaxy shapes
are independent of S/N requires different measures
of S/N for each catalog. As described in §7.3.2, for
IM3SHAPE we calibrate the bias in the shear measure-

32

In both cases the slopes are consistent with zero
and show maximal deviations well below our required
c

rms

< 2 ⇥ 10�3 (equation 3-11).

8.4. B-mode Statistics

The deflection field induced by gravitational lensing
has the special property that it is essentially curl-free.
Since this is also true of electric fields, the shear field is
generally referred to as being an “E-mode” field. The
corresponding divergence-free “B-mode” field can be
considered as corresponding to an imaginary conver-
gence (Schneider et al. 2002).

In fact gravity can induce a slight B-mode from
source clustering (Schneider et al. 2002), multiple de-
flections (Krause & Hirata 2010), and intrinsic align-
ments (Crittenden et al. 2001). But in practice all of
these effects are well below the level at which we could
measure them, which means that any significant mea-
sured B-mode is almost certainly a sign of uncorrected
systematic errors in the shears.

We calculate B-mode statistics of the shear field
by computing linear combinations of the binned shear
two-point correlation function values that are insen-
sitive to any E-mode signals, modulo a very small
amount of computable E- to B-mode leakage. See
Becker (2013) for details. In this application, we have
chosen linear combinations that approximate band-
powers in Fourier space as described in Becker & Rozo
(2014). Finally, we have used the mock catalogs de-
scribed in Becker et al. (2015) to compute the shape
noise and sample variance uncertainty for the statis-
tics. These mock catalogs include the survey mask and
match the shape noise and source photometric redshift
distribution for each of the two shear catalogs. We have
used 126 mock catalogs in total.

Figure 23 shows the measured B-mode for each cat-
alog using the most conservative selection described
below. Each band-power measurement is plotted at its
central location in `. Adjacent points are highly cor-
related and the �

2 given in the figure accounts for the
correlation. We find a �

2

/d.o.f. of 22.3/20 for NGMIX
and 16.1/20 for IM3SHAPE indicating no significant B-
mode contamination in the shear field.

8.5. Calibration Tests

It is difficult to test the overall shear calibration us-
ing the data alone. However, we can use the GREAT-
DES simulation described in §6.1 to test the perfor-
mance of the two shear algorithms on relatively real-
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Fig. 23.— The measured B-mode for NGMIX (top) and
IM3SHAPE (bottom). Each band power measurement
is plotted at its central location in `. The grey band
shows the uncertainty on the measurement due to both
sample variance and shape noise. Adjacent points are
highly correlated and the indicated �

2 accounts for the
correlations.

istic images with known applied shear.
Since IM3SHAPE uses this simulation to calibrate

the shear measurements (cf. §7.3.2), the overall cor-
rected shears should be accurate, almost by construc-
tion. The calibration is done without weighting, but
here we use the same weights that we recommend for
the data (cf. §7.3.4). The mean shear is thus not mathe-
matically guaranteed to be exactly zero, but indeed the
net bias after applying the calibrations is negligible:
m

1

= 0.0008 ± 0.0015 and m

2

= �0.0068 ± 0.0015.
For NGMIX, the overall calibration error is a more

relevant test. The priors used for GREAT-DES were
the same as used for the DES SV data, which is ex-
pected to be appropriate given the general agreement
between the galaxy properties in the simulation and the
data (cf. §6.1). The overall calibration error for NG-
MIX is measured to be m

1

= �0.030 ± 0.0015 and
m

2

= �0.035 ± 0.0015. This is not quite meeting our
requirement of |m| < 0.03 from equation 3-10.

Considering that many science applications will use
tomography to investigate the evolution of the shear
signal with redshift, it is interesting to look at the cal-
ibration of both shear codes as a function of redshift.
We use the known photometric redshifts of the galax-
ies from the COSMOS data where the galaxy images
used for the simulation originated to test whether the
calibration is robust to different distributions of galaxy
properties in general, and as they vary with redshift in
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Agreement between Im3shape and NGMix better than 5%

Jarvis et al (arXiv:1507.05603)
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Figure 10. Each row of panels show the weighted spectroscopic redshift distributions (shaded area) of the objects in each tomographic
bin as selected by the mean of skynet compared to estimates of the redshift distribution of the four methods used in this work. Top
row: The spectra used in this test comes from VVDS-F14, an independent sample not not used for training. Second row: The spectra
used in this test are a 30% subset of VVDS-Deep used as part of the validation sample. Third row: The spectra used in this test are a
30% subset of the matched spectroscopic catalogue used for validation. Bottom row: The redshift distribution in the tomographic bins
for the ngmix sample.

methods is very small despite low-z di↵erences in the corre-
lation function, with agreement at much better than the 1�
level. bpz has a relative bias of about 1�, by comparison,
which corresponds to about 3% in �

8

.

For completeness, we have also repeated the above anal-
yses and those in Sec. 6.1.2 on the im3shape n(z) with the
same redshift boundaries matching those derived for ngmix

and again for tomographic bins derived for im3shape, and
find in all cases that the major conclusions and resulting
di↵erences across photo-z methods are consistent between
analyses of the two catalogues at the level of accuracy we
require for SV analysis.
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Figure 11. A comparison of the relative agreement of the n(z)
estimates for annz2, bpz, skynet, and tpz for the ngmix shear
catalogue. Left panel: The relative magnitude of the correlation
function compared to the spectroscopic n(z) prediction is shown
for the non-tomographic ⇠

+

, the three auto-correlations, and the
three cross-correlations. The grey band is the actual variance in
the magnitude of ⇠

+

measured from SV data. Right panels: The
corresponding constraints on �

8

, with fiducial skynet results nor-
malised to one (vertical dotted black line). The likelihood his-
tograms, colour-coded to match the ⇠

+

points on the left, are
shown for each tomographic constraint. The peak of the likeli-
hood histogram for the non-tomographic constraint is given by
the vertical black line for comparison. The vertical ordering is
the same as the legend in the left panel.

6.1.2 Null tests relative to matched spectroscopic samples

One di�culty with the results in Sec. 6.1.1 is that we have
no way of determining what the true n(z) is, and thus can
only compare relative agreement between photo-z methods.
We can, however, create an experiment in which the n(z)
is known to be exactly that of our weighted independent
spectroscopic sample (Test 1). We then repeat the analysis
from Sec. 6.1.1 for this test as an additional way of charac-
terising systematic photo-z uncertainties. Though there are
only 2956 galaxies in the independent spectroscopic sam-
ple within our 0.3 < z < 1.3 boundaries, we assume the
estimated n(z) from each code and the spec-z distribution
instead represents a sample with the same number of objects
as the ngmix catalogue. These redshift distributions (see top
panel Fig. 10) are used to measure the relative di↵erence in
⇠
+/� compared to the spectroscopic prediction as in Sec.

6.1.1. We also calculate error bars on the points, which rep-
resent the 1� error in the di↵erence from bootstrapping the
n(z) of the sample. Since we are comparing the matched pho-
tometric and spectroscopic n(z) distributions for the same
galaxies contained within the VVDS-F14 field, there is no
sample variance contribution to these error bars. However,
since it is a small field separate from the DES SV SPT-E re-
gion, any extrapolation of the bias to the full DES SV shear
catalogue could still be over- or under-estimated.

We show the results of this analysis in Fig. 12. The bias
in ⇠

+

relative to the spectroscopic prediction for the three
machine learning codes (annz2, skynet, and tpz) is shown
in the left panel. It is in good agreement and consistent
across the correlations at about 5 � 10% larger than the

Figure 12. A comparison of the relative agreement of the n(z)
estimates for annz2, bpz, skynet, and tpz to the weighted in-
dependent spectroscopic galaxy sample. Left panel: The relative
magnitude of the correlation function compared to the spectro-
scopic n(z) prediction is shown for the non-tomographic ⇠

+

, the
three auto-correlations (11, 12, 33 bin pairs), and the three cross-
correlations (12, 13, 23 bin pairs). The grey band is the actual
variance in the magnitude of ⇠

+

measured from SV data. Error
bars on the points are the 1-� error on the di↵erence of ⇠

+

ob-
tained from bootstrapping the n(z) of the spectroscopic sample.
Right panels: The corresponding constraints on �

8

, normalised to
one (vertical dotted black line). The likelihood histograms, colour-
coded to match the ⇠

+

points on the left, are shown for each to-
mographic constraint. The peak of the likelihood histogram for
the non-tomographic constraint is given by the vertical black line
for comparison. The vertical grey band is the corresponding 1-�
bootstrap error in �

8

.

Figure 13. A comparison of the relative agreement of the n(z)
estimates for annz2, bpz, skynet, and tpz to the weighted ’deep’
spectroscopic galaxy sample, showing the same information as
described in Fig. 12.

spectroscopic prediction. This is consistent with the machine
learning codes producing too wide p(z) or over-estimated
high-z tails, both of which can bias ⇠

+

high. The empirically
corrected bpz photo-z estimates perform similarly, with a
maximum bias in ⇠

+

of 10% in the highest redshift auto-
correlation.

MNRAS 000, 000–000 (0000)

Bonnett et al (arXiv:1507.05909)
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Figure A2. Spherical harmonic shear power spectrum estimated
using PolSpice. The left and right panels correspond to the ng-

mix and im3shape catalogs, respectively. The top and bottom
panels show the E- and B-modes, respectively. The measurement
uncertainties are estimated using the mock catalogs. The black
solid lines show the predictions for the flat, ⇤CDM model given
above. Note that the theoretical prediction has been convolved
with the PolSpice kernels, which relate the true to measured
power spectra. The S/N values for the E-modes are computed as
outlined in Section 4.1 and the �2 values for the B-modes indi-
cate consistency with zero. The reported values take into account
correlations between the band-powers.

tion range introduce kernels which relate the power spectra
measured by PolSpice to the underlying true power spec-
tra. These kernels can be computed for a given apodization
scheme and integration range and can therefore be corrected
for when comparing measurement to theory (for details see
Chon et al. 2004). For our analysis, we pixelise the galaxy
ellipticities onto a HEALPix pixelisation of the sphere with
a resolution of Nside=1024, where each pixel covers a solid
angle of 11.8 arcmin2. In order to obtain a robust estimate
of the shear field, we need to correct for multiplicative bias
in the measured ellipticities. Since the correction factors de-
scribed in Sections 2.1 and 2.2 are noisy estimates of the
true corrections, we determine the mean sensitivity or mul-
tiplicative bias correction for our galaxy sample and apply
this mean correction to the pixelised maps. Additionally,
we apply the DES SV LSS mask (Crocce et al. in prepara-
tion) to our maps in order to restrict to regions deeper than
MAG_I_AUTO = 22.5. For the power spectrum measurement,
we limit all integrations to scales smaller than ✓max = 15 de-
grees and we apodize the correlation function with a Gaus-
sian window of ✓FWHM = 10 degrees. Finally, we compress
the power spectra into 7 band-powers with PolSpice band-
power kernels.

The noise power spectrum needs to be computed from
simulations. In order to produce noise only maps, we remove
correlations in the input maps by rotating each galaxy shear
by a random angle. We then estimate the noise power spec-
trum as the mean of the power spectra of 100 such random
realizations. This procedure yields shape noise estimates

consistent with C`,SN =
�2

✏
n
pix

where �2
✏ is the variance of

either component of the mean ellipticity per pixel and npix

is the number density of HEALPix pixels; this suggests that

the ellipticity distribution of the galaxies is non- Gaussian
and therefore the analytic estimate can only be applied after
averaging the distribution over pixels. We test the pipeline
using Gaussian field realizations and the mock catalogs.

A3 Results

Figure A1 shows the non-tomographic band-powers using
the methods of Becker & Rozo (2014), their window func-
tions as the dotted lines, and their error bars computed with
the mock catalogs as the grey bands. We find a detection
significance 6.1� and 5.7� for ngmix and im3shape, respec-
tively. These detection significances are similar to the real-
space two-point functions. Finally, the solid line shows the
expected shear power spectrum amplitude assuming the flat,
⇤CDM model given above. The dashed line shows for each
band-power the integral of the band-power window function
over the shear power spectrum.

Figure A2 shows the results for the PolSpice statistics.
We find a detection of cosmic shear of 5.1� and 5.5� for
ngmix and im3shape respectively for the PolSpice statis-
tics. Note that the PolSpice statistics do not use as many
high-` modes as the real-space band-powers or the real-space
correlation functions, so that one expects a lower detection
significance. We also find that the B-modes are statistically
consistent with zero for the PolSpice statistics.

APPENDIX B: VALIDATION OF THE MOCK
CATALOGS

In this section we present validation tests on the mock
catalogs. We first compare the shear correlation functions
measured in the mock catalogs in tomographic bins with
the theoretical expectation from the Takahashi et al. (2012)
fitting function for the matter power spectrum. The result
of this test is shown in Figure B1. We find that at high
redshift the small-scale shear correlation functions are
suppressed relative to the theoretical expectation. Note
however that this numerical e↵ect is below the scales where
the two-point functions are being used for cosmological
parameter estimation (see Table 2 of DES et al. 2015). Ad-
ditionally, we only estimate the covariance of the two-point
functions from the mock catalogs. Our covariance matrices
from the mock catalogs agree well with the halo model
computations at small-scales, indicating that the covariance
is less sensitive to these numerical e↵ects (see Sec. 5 for
a quantitative comparison). Future work may require
higher-resolution shear fields for covariance estimation.

APPENDIX C: DETAILED COVARIANCE
MATRIX VALIDATION

In this section, we present further details of the valida-
tion of the covariance matrices, including our tomographic
halo model computations and the comparison to the simu-
lations. The halo model covariance was computed with the
CosmoLike covariance module (see Eifler et al. 2014b and
Krause et al. 2015 for details).

In the halo model, the covariance of tomographic shear
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Figure 1. The measured shear correlation functions ⇠+/� for a single tomographic bin for the ngmix shape catalog (left) and im3shape

shape catalog (right). The single tomographic bin corresponds to redshift distribution shown in Figure 3, z ⇡ 0.3 � 1.3. ote that the
redshift distributions of the two catalogs are not identical, so that the shear correlation functions are not expected to match. A detailed
comparison of the two catalogs is described in Section 6.2. Negative measurements are shown as upper limits. The error bars show the
1� uncertainties from the mock catalogs with the appropriate level of shape noise for each shear pipeline. The black solid lines show the
predictions from a flat, ⇤CDM model described in Section 3 — not chosen to fit the data.

Figure 2. The measured shear correlation functions ⇠+/� times ✓ in six angular bins and three tomographic bins for the ngmix shape
catalog (left) and im3shape shape catalog (right). The tomographic bins correspond to those shown in Figure 3, z ⇡ 0.30 � 0.55, 0.55 �
0.83, 0.83 � 1.30, and are labeled from 1 to 3, increasing with redshift. Thus, panel ‘3-2’ shows the cross-correlation between the highest
and middle redshift bins. The error bars show the 1� uncertainties from the mock catalogs with the appropriate level of shape noise for
each shear pipeline. As in Figure 1, the black solid lines show the predictions from our fiducial ⇤CDM model — not chosen to fit the
data.
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the inclusion of the AGN model causes an increase in S8

of 20% of our error bar (compare the “Without small-scale
cuts” line in Table 1 with the “OWLS AGN P (k) w/o small-
scale cuts” line). (However, with our fiducial cuts to small
scales the increase is only 13% of our error bar (compare the
“OWLS AGN P (k)” line in Table 1 with the Fiducial line).
We note that although the contours in Figure 9 do appear to
tighten slightly along the degeneracy direction when includ-
ing small scales, the errorbar on S8 increases slightly. This
could be due to the theoretical model being a poor fit at
small scales, or the noisiness of the covariance matrix. ) To
take advantage of the small scale information in future weak
lensing analyses, more advanced methods of accounting for
baryonic e↵ects will be required. Eifler et al. (2014a) pro-
pose a PCA marginalisation approach that uses information
from a range of hydrodynamic simulations, while Zentner
et al. (2013b) and Mead et al. (2015) propose modified halo
model approaches to modelling baryonic e↵ects. Even with
more advanced approaches to baryonic e↵ects, future cosmic
shear studies will have to overcome other systematics that
a↵ect small angular scales, such as the shape measurement
selection biases explored in Hartlap et al. (2011).

6 OTHER DATA

In this Section we compare the DES SV cosmic shear con-
straints with other recent cosmological data. We first com-
pare our results to those from CFHTLenS. We then com-
pare and combine with the Cosmic Microwave Background
(CMB) constraints from Planck (Planck XIII 2015), primar-
ily using the TT + low P dataset throughout (which we refer
to simply as “Planck” in most figures). We also compare to
another Planck data combination which used high-` TT, TE
and EE data and low-` P data.

Planck also measured gravitational lensing of the CMB,
which probes a very similar quantity to cosmic shear, but
weighted to higher redshifts (z ⇠ 2); we refer to this as
“Planck lensing” when comparing constraints. We discuss
additional datasets and present constraints on the dark
energy equation of state. See Planck Collaboration et al.
(2015c) and Lahav & Liddle (2014) for a broad review of
current cosmological constraints.

6.1 Comparisons

A comparison of DES SV constraints to those from other
observables is shown in Figure 10. The observables shown are
described below. Constraints on S8 from these comparisons
are also shown in Table 1 and Figure 3.

6.1.1 Other lensing data

CFHTLenS remains the most powerful current cosmic shear
survey, with 154 square degrees of data in the u, g, r, i, and
z bands. Table 1 summarises the constraints from the non-
tomographic analysis of K13 and the tomographic analysis
of H13 that we have computed using the same parameter
estimation pipeline as the DES SV data (starting from the
published correlation functions and covariance matrices).

We investigate the e↵ect of the scale cuts used for the

Figure 10. Joint constraints from a selection of recent datasets
on the total matter density ⌦m and amplitude of matter
fluctuations �8. From highest layer to lowest layer: Planck
TT+lowP(red); X-ray cluster mass counts (Mantz et al. 2015,
white/grey shading); DES SV (purple); CFHTLenS (H13, or-
ange); Planck CMB lensing (yellow); CMASS f�8 (Chuang et al.
2013, green).

CFHTLenS analysis so that we can make a more fair com-
parison to DES SV. In Table 1 and Fig 3 we show constraints
using scale cuts that were used in both C13 and K13 to test
the robustness of the results, labelled “original conservative
scales”. (H13 exclude angles < 30 for redshift bin combina-
tions involving the lowest two redshift bins from ⇠+, and
excluding angles < 300 for bin combinations involving the
lowest four redshift bins, and angles < 160 for bin combina-
tions involving the highest two redshift bins from ⇠�. K13
exclude angles < 170 from ⇠+ and < 530 from ⇠�.) Finally,
we show the CFHTLenS results using minimum scales se-
lected using the approach described in Section 4.2, which
we refer to as “modified conservative scales” in Table 1 and
Fig 3.

We show constraints from H13, with our scale cuts, on
(⌦m,�8) as orange contours in Figure 10. Our cosmologi-
cal constraints are consistent with H13, but have a higher
amplitude and larger uncertainties.

The values in Table 1 show that our prescription for
selecting which scales to use gives similar results to the pre-
scription in H13 (compare the “CFHTLenS (H13) original
conservative scales” line to the “CFHTLenS (H13) modified
conservative scales” line). The K13 results show some sen-
sitivity to switching from using all scales to cutting small
scales (possibly because of the apparent lack of power in the
large scale points that K13 used but H13 did not), with
a lower amplitude preferred when excluding small scales
(though see also Kitching et al. (2014) which prefers higher
amplitudes). The uncertainties increase by ⇠ 50% for the
“modified conservative scales” case (✓min(⇠+) = 3.50 and
✓min(⇠�) = 280) compared to using all scales.

The most comparable lines in Table 1 show that our
tomographic uncertainties are ⇠ 20% larger than those
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Figure 11. Non-tomographic DES SV (blue circles), CFHTLenS
K13 (orange squares) and Planck (red) data points projected
onto the matter power spectrum (black line). This projection is
cosmology-dependent and assumes the Planck best fit cosmology
in ⇤CDM. The Planck error bars change size abruptly because
the C`s are binned in larger ` bins above ` = 50.

of the point is the median of the window function of the
P (k) integral used to predict the observable (⇠+ or C`). The
height of the point is given by the ratio of the observed to
predicted observable, multiplied by the theory power spec-
trum at that wavenumber. For simplicity we use the no-
tomography results from each of DES SV and CFHTLenS
(K13). The results are therefore cosmology dependent, and
we use the Planck best fit cosmology for the version shown
here. The CFHTLenS results are below the Planck best fit
at almost all scales (see also discussion in MacCrann et al.
2014). The DES results agree relatively well with Planck up
to the maximum wavenumber probed by Planck, and then
drop towards the CFHTLenS results.

6.2 Dark Energy

The DES SV data is only 3% of the total area of the full
DES survey, so we do not expect to be able to significantly
constrain dark energy with this data. Nonetheless, we have
recomputed the fiducial DES SV constraints for the second
simplest dark energy model, wCDM, which has a free (but
constant with redshift) equation of state parameter w, in
addition to the other cosmological and fiducial nuisance pa-
rameters (see Section 3). The purple contours in Figure 12
show constraints on w versus the main cosmic shear param-
eter S8; we find DES SV has a slight preference for lower
values of w, with w < �0.68 at 95% confidence. There is a
small positive correlation between w and S8, but our con-
straints on S8 are generally robust to variation in w.

The Planck constraints (the red contours in Figure 12)
agree well with the DES SV constraints: combining DES SV
with Planck gives negligibly di↵erent results to Planck alone.
This is also the case when combining with the Planck+ext
results shown in grey. Planck Collaboration et al. (2015b)

Figure 12. Constraints on the dark energy equation of state w
and S8 ⌘ �8(⌦m/0.3)0.5, from DES SV (purple), Planck (red),
CFHTLenS (orange), and Planck+ext (grey). DES SV is consis-
tent with Planck at w = �1. The constraints on S8 from DES SV
alone are also generally robust to variation in w.

discuss that while Planck CMB temperature data alone do
not strongly constrain w, they do appear to show close to a
2� preference for w < �1. However, they attribute it partly
to a parameter volume e↵ect, and note that the values of
other cosmological parameters in much of the w < �1 region
are ruled out by other datasets (such as those used in the
‘ext’ combination).

Planck CMB data combined with CFHTLenS also show
a preference for w < �1 (Planck Collaboration et al. 2015b).
The CFHTLenS constraints (orange contours) in Figure 12
show a similar degeneracy direction to the DES SV results,
although with a preference for slightly higher values of w
and lower S8. The tension between Planck and CFHTLenS
in ⇤CDM is visible at w = �1, and interestingly, is not fully
resolved at any value of w in Figure 12. This casts doubt on
the validity of combining the two datasets in wCDM.

7 CONCLUSIONS

We have presented the first constraints on cosmology from
the Dark Energy Survey. Using 139 square degrees of Science
Verification data we have constrained the matter density of
the Universe ⌦m and the amplitude of fluctuations �8, and
find that the tightest constraints are placed on the degener-
ate combination S8 ⌘ �8(⌦m/0.3)0.5, which we measure to
7% accuracy to be S8 = 0.81± 0.06.

DES SV alone places weak constraints on the dark
energy equation of state: w < �0.68 (95%). These do
not significantly change constraints on w compared to
Planck alone, and the cosmological constant remains within
marginalised DES SV+Planck contours.

The state of the art in cosmic shear, CFHTLenS, gives
rise to some tension when compared with the most powerful
dataset in cosmology, Planck (Planck Collaboration et al.
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Figure 3. Graphical illustration of the 68% confidence limits on S8 ⌘ �8(⌦m/0.3)0.5 values given in Table 1, showing the robustness
of our results (purple) and comparing with the CFHTLenS and CMB lensing results (orange) and Planck (red). The grey vertical band
aligns with the fiducial constraints at the top of the plot. Note that Planck lensing in particular optimally constrains a di↵erent quantity
than S8 shown above e.g. see the second and third columns of Table 1.

ing variations of the DES SV analysis (see Section 5) and
combinations with CFHTLenS and Planck (see Section 6.1).

For comparison with other constraints we also investi-
gated the impact of ignoring shear measurement and photo-
metric redshift uncertainties and find that the central value
of S8 changes negligibly, and the error bar decreases by
⇠20% (see Table 1 for details).

In Table 1 we also show results ignoring all systematics.
This is the same as the “No photoz or shear systematics”
case but additionally ignoring intrinsic alignments, so that
only the other cosmological parameters are varied. The cen-
tral value shifts down by 0.037 and the error bar is reduced
by 27% compared to the fiducial case. Therefore the sys-
tematics contribute almost half (in quadrature) of our total
error budget, and further e↵ort will need to be made to re-
duce systematic uncertainties if we are to realise a significant
improvement in the constraints (from shear 2pt correlations
alone) with larger upcoming DES samples.

4 CHOICE OF DATA VECTOR AND SCALES
USED

In this Section we consider the impact of the choice of two-
point statistic on the cosmological constraints, and investi-
gate how our fiducial estimators are a↵ected by the choice
of angular scales used.

4.1 Choice of two-point statistic

Be15 present results for a selection of two-point statistics
– see that work, and references therein for more detailed
description of the statistics and their estimators. For an
overview of the theory presented here see Bartelmann &
Schneider (2001).

The statistics can all be described as weighted integrals
over the weak lensing convergence power spectrum at an-
gular wavenumber `, Cij

` , of tomographic bin i and tomo-
graphic bin j, which can be related to the matter power
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Redshift bin combination ✓min(⇠+) ✓min(⇠�)

(1,1) 4.6 56.5
(1,2) 4.6 56.5
(1,3) 4.6 24.5
(2,2) 4.6 24.5
(2,3) 2.0 24.5
(3,3) 2.0 24.5

Table 2. Scale cuts for tomographic shear two point functions
⇠± using the prescription described in the text.

tential bias on �8 as that which would arise from ignoring
the presence of baryonic e↵ects; as a specific model for these
e↵ects we use the OWLS AGN simulation (Schaye et al.
2010). See Section 5.4 for more details, in particular Eq.
8 for the implementation of the AGN model. For a given
angular scale ⇠� is more a↵ected than ⇠+: for example the
fractional bias when using all scales in ⇠�, but none in ⇠+
(✓�min = 20, ✓+min = 245.50) is ⇡ 0.03 whereas the bias when
using all scales in ⇠+, but none in ⇠� (✓+min = 20, ✓�min =
245.5) is ⇡ 0.015. For the non-tomographic case, we use a
minimum angular scale of 3 arcminutes for ⇠+, and 30 ar-
cminutes for ⇠�, because on these angular scales the bias is
< 25% of the statistical uncertainty on �8 (with no other
parameters marginalised). For the tomographic case we use
a more general prescription in which we cut angular bins
that change significantly when we change the non-linear
power model. We remove data points where the theoreti-
cal prediction changes by more than 5% when the nonlinear
matter power spectrum is switched from the fiducial to ei-
ther that predicted from the FrankenEmu10 code (based on
the Coyote Universe Simulations (Heitmann et al. 2014b),
and extended at high k using the ‘CEp’ presciption from
Harnois-Déraps et al. 2015), or to the OWLS AGN model.
The inferred biases for the non-tomographic ⇠± shown in
Figure 5 suggest similar angular cuts. The results of these
cuts are summarised in Table 2. We demonstrate the e↵ec-
tiveness of these cuts and discuss other methods of dealing
with non-linear scales in Section 5.4.

We limit ⇠+ to < 60 arcmin, since these large scales in
⇠+ are highly correlated and therefore add little information,
and are likely to be more severely a↵ected by additive shear
biases (as detailed in J15).

5 ROBUSTNESS TO SYSTEMATICS

We now examine the robustness of our fiducial constraints
to assumptions made about the main systematic uncertain-
ties for cosmic shear. In each subsection we consider the
impact of ignoring the systematic in question, and examine
alternative prescriptions for the input data or modelling.

5.1 Shear calibration

The measurement of galaxy shapes at the accuracy required
for cosmic shear is a notoriously hard problem. The raw
shapes in our two catalogues are explicitly corrected for

10 http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html

Figure 6. Robustness to assumptions about shear measurement.
Shaded purple (fiducial case): ngmix, with one shear mulitiplica-
tive bias parameter m for each of the 3 tomographic redshift bins,
with an independent Gaussian prior on each mi with � = 0.05.
Solid blue lines: im3shape with the same assumptions. Planck is
shown in red.

known sources of systematic bias. This involves either cali-
bration using image simulations in the case of im3shape or
sensitivity corrections in the case of ngmix (see J15). We
rely on a number of assumptions and cannot be completely
certain the final catalogues carry no residual bias. It is there-
fore important that our model includes the possibility of er-
ror in our shape measurements. As in Jee et al. (2013) we
marginalise over shear measurement uncertainties in param-
eter estimation.

J15 estimate the systematic uncertainty on the shear
calibration by comparing the two shape measurement codes
to image simulations, and to each other. Following that dis-
cussion we include in our model a multiplicative uncertainty
which is independent in each of the three redshift bins. We
thus introduce three free parameters mi (i = 1, 2, 3). The
predicted data are transformed as

⇠i,j±pred = (1 +mi)(1 +mj)⇠
i,j
±true (5)

for redshift bins i, j.
As discussed in J15, we use a Gaussian prior on the

mi parameters of width 0.05, compared to a 0.06 uniform
prior used by Jee et al. (2013). No systematic shear calibra-
tion uncertainties were propagated by CFHTLenS in H13
or earlier work (although K13 did investigate the statistical
uncertainty on the shear calibration arising from having a
limited calibration sample). If we neglect this uncertainty
and assume that our shape measurement has no errors (fix-
ing mi = 0) then our uncertainty on S8 is reduced by 9%
and the central value is unchanged (see the “Without shear
bias marginalisation” row in Table 1 and Figure 3 for more
details).

Figure 6 shows the result of interchanging the two
shear measurement codes, swapping ngmix (fiducial) to
im3shape. The im3shape constraints are weaker, because
the shapes are measured from a single imaging band (r-
band) instead of simultaneously fitting to three bands (r,
i, z) as in ngmix, and im3shape retains fewer galaxies after
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Figure 7. Results using di↵erent photoz codes. Purple filled con-
tours: fiducial case (SkyNet). Blue dashed lines: ANNz2. Green
solid lines: TPZ. Red dash-dotted lines: BPZ w/ correction.

quality cuts (in particular the im3shape catalogue contains
around half as many galaxies as ngmix in our highest red-
shift bin). The preferred value of S8 is shifted about 1�
higher for im3shape than ngmix and the error bar is in-
creased by 38% (see the “im3shape shears” row in Table
1 and Figure 3). While we do not expect the constraints
from the two shear codes to be identical, since they come
from di↵erent data selections, the two codes do share many
of the same galaxies, and of course probe a common vol-
ume. We can estimate the significance of the shift using the
mock DES SV simulations detailed in Be15. Carefully tak-
ing into account the overlapping galaxy samples, correlated
shape noise and photon noise, and of course the common
area, we create an ngmix and an im3shape realisation of
our signal for each mock survey. We then compute the dif-
ference in the best-fit �8s (keeping all other parameters fixed
to fiducial values for computational reasons) for the two sig-
nals, and compute the standard deviation of this di↵erence
over the 126 mock realisations. We find this di↵erence has
a standard deviation of 0.028, compared with the di↵erence
in this statistic (the best-fit �8 with all other parameters
fixed) on the data of 0.046. We conclude that although this
shift is not particularly significant, it could be an indica-
tion of shape measurement biases in either catalogue. The
decreased statistical errors of future DES analyses will pro-
vide more stringent tests on shear code consistency.

5.2 Photometric redshift biases

In this subsection we investigate the robustness of our con-
straints to errors in the photometric redshifts. As motivated
by Bo15, for our fiducial model we marginalise with a Gaus-
sian prior of width 0.05 over three independent photometric
redshift calibration bias parameters �zi (i = 1, 2, 3) where

npred
i (z) = nmeas

i (z � �zi) (6)

for redshift bin i, where nmeas
i (z) is the measured photo-

metric redshift probability distribution and npred
i (z) is the

redshift distribution used in predicting the shear two-point

functions (i.e. our model for the true ni(z) assuming the
given �zi). This model is discussed further in Bo15 where it
is shown to be a reasonably good model for the uncertainties
at the current level of accuracy required.

If we neglect photometric redshift calibration uncertain-
ties then the error on S8 is reduced by ⇠10% and its value
shifts down by ⇠10% of the fiducial error bar (see the row
labelled “Without photo-z bias marginalisation” in Table 1
and Figure 3).

In Figure 7 we show the impact of switching between
the four photometric redshift estimation codes described in
Bo15. We see excellent agreement between the codes, al-
though as detailed in Bo15, the machine learning codes are
not independent - Skynet, ANNZ2, TPZ are trained on the
same spectroscopic data, while an empirical calibration is
performed on the template fitting method BPZ using sim-
ulation results. As quantified in Table 1 and illustrated in
Figure 3, the constraint on S8 moved by less than two thirds
of the error bar when switching between photometric red-
shift codes, with the biggest departure occurring for BPZ,
which moves to higher S8. A more detailed analysis and vali-
dation of the photo-zs using relevant weak lensing estimators
and metrics is performed in Bo15 for galaxies in the shear
catalogues.

5.3 Intrinsic alignments

In this subsection we investigate the e↵ect of assumptions
made about galaxy intrinsic alignments (IAs), by repeating
the cosmological analysis with (i) no intrinsic alignments,
(ii) a simpler, linear, intrinsic alignment model, (iii) a more
complete tidal alignment model, and (iv) adding a free power
law redshift evolution. We also show constraints on the am-
plitude of intrinsic alignments and show the benefit of using
tomography. We use the same data vector and likelihood
calculation for all models.

It was realised early in the study of weak gravitational
lensing (Heavens et al. 2000; Croft & Metzler 2000; Cate-
lan et al. 2001; Crittenden et al. 2001) that the unlensed
shapes of physically close galaxies may align during galaxy
formation due to the influence of the same large-scale gravi-
tational field. This type of correlation was dubbed “Intrinsic-
Intrinsic”, or II. Hirata & Seljak (2004) then demonstrated
that a similar e↵ect can give rise to long-range IA correla-
tions as background galaxies are lensed by the same struc-
tures that correlate with the intrinsic shapes of foreground
galaxies. This gives rise to a “Gravitational-Intrinsic”, or
GI, correlation. The total measured cosmic shear signal is
the sum of the pure lensing contribution and the IA terms:

Cij
obs(`) = Cij

GG(`) + Cij
GI(`) + Cij

IG(`) + Cij
II (`). (7)

Neglecting this e↵ect can lead to significantly biased cosmo-
logical constraints (Heavens et al. 2000; Bridle & King 2007;
Joachimi et al. 2011; Kirk et al. 2012; Krause et al. 2015).

We treat IAs in the “tidal alignment” paradigm, which
assumes that intrinsic galaxy shapes are linearly related
to the tidal field (Catelan et al. 2001), and thus that the
additional Cij(`) terms above are integrals over the 3D
matter power spectra. It has been shown to accurately de-
scribe red/elliptical galaxy alignments (Joachimi et al. 2011;
Blazek et al. 2011). More details of all the IA models consid-
ered in this paper can be found in Appendix A. Within the
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Figure 4. Comparison of constraints on �8 and ⌦m for various
choices of data vector: ⇠± with no tomography or systematics
(purple filled), Cij

` bandpowers (dashed red lines) and PolSpice-
C` bandpowers (solid green lines) (both with no tomography or
systematics). We do not show our fiducial constraints, or Planck,
since we have not marginalised over systematics for the con-
straints shown here, so agreement is not necessary or meaningful
(although Table 1 suggests there is reasonable agreement).

spectrum, P�(k, z), by the Limber approximation

Cij
` =

9H4
0⌦

2
m

4c4

Z �
h

0

d�
gi(�)gj(�)

a2(�)
P�

✓
`

fK(�)
,�

◆
, (2)

where � is the comoving radial distance, �h is the comoving
distance of the horizon, a(�) is the scale factor, and fK(�)
the comoving angular diameter distance. We assume a flat
universe (fK(�) = �) hereafter. The lensing e�ciency gi is
defined as an integral over the redshift distribution of source
galaxies n(�(z)) in the ith redshift bin:

gi(�) =

Z �
h

�

d�0ni(�
0)
fK(�0 � �)

fK(�0)
, (3)

Our fiducial statistics, the real space correlation functions,
⇠±(✓), are weighted integrals of the angular power spectra:

⇠ij± (#) =
1
2⇡

Z
d` ` J0/4(`#)C

ij
` , (4)

where J0/4 is the Bessel function of either 0th or 4th order.
⇠± have the advantage of being straightforward to estimate
from the data, whereas the Cij

` s require more processing but
are a step closer to the theoretical predictions. An advantage
of using Cij

` is that the signal is split into two parts, E- and
B-modes, the latter of which is expected to be very small
for cosmic shear. The cosmic shear signal is concentrated
in the E-mode because to first order the shear signal is the
gradient of a scalar field. The B-mode can therefore be used
as a test of systematics as discussed in J15 and Be15.

Be15 also implement the method of Becker & Rozo
(2014) which uses linear combinations of ⇠±(✓) to estimate
fourier space bandpowers of Cij

` . Also presented are PolSpice
(Szapudi et al. 2000) estimates of the Cij

` s from pixelised
shear maps using the pseudo-C` estimation process, which
corrects the spherical harmonic transform values for the ef-
fect of the survey mask (see Hikage et al. (2011) for the first

Figure 5. The fractional bias on �8 due to ignoring an OWLS
AGN baryon model (solid lines) compared to the statistical uncer-
tainty on �8 (dashed lines) as a function of minimum scale used
for ⇠� (✓�min, x-axis) or ⇠+ (✓+min, colours). Whereas the statistical
error is minimised by using small scales, the bias is significant for
✓�min < 300 and ✓+min < 30.

implementation for cosmic shear). For simplicity we do not
perform a tomographic analysis using these estimators. To
compare cosmological constraints with these di↵erent esti-
mators we do not marginalise over any systematics, to enable
a more conservative comparison between them. (Note that
marginalising over intrinsic alignments inflates the errors of
non-tomographic analyses as described in Section 5.3).

Figure 4 shows constraints from the di↵erent estima-
tors, and we see that the three are in good agreement. A
more detailed comparison can be made using the numbers
in Table 1, which are shown graphically in Figure 3. The rel-
evant lines for comparison are the “No tomography or sys-
tematics” line which uses the fiducial ⇠± data vector, and
the two C` bandpower lines. The uncertainties are similar
between these methods, and the PolSpice-C` constraints are
shifted to slightly lower S8, though are consistent with con-
straints based on the ⇠± approach.

4.2 Choice of scales

All the two-point statistics discussed thus far involve a mix-
ing of physical scales: it is clear from Eq. 4 that ⇠± at a given
real space angular scale uses information from a range of an-
gular wavenumbers `, while C` itself uses information from
a range of physical scales k in the matter power spectrum
P�(k, z). In Section 5.4 we discuss some of the di�culties
in producing an accurate theoretical estimate of P�(k, z) for
high k (small physical scales). In this work, we aim to null
the e↵ects of this theoretical uncertainty by cutting small
angular scales from our data vector, since using scales where
the theoretical prediction is inaccurate can bias the derived
cosmological constraints, mostly due to unknown baryonic
e↵ects on clustering.

Figure 5 demonstrates the impact of errors in the mat-
ter power spectrum prediction on estimates of �8 from a
non-tomographic analysis. In this figure we estimate the po-
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