

ACDM & Beyond

Adam Amara **ETH** zürich 09/15

Inflation

Radiation

Matter Baryons (5%) Dark Matter (24%)

Dark Energy (71%)

Cosmic Microwave Background

	Parameter	WMAP		+eCMB +eCM		MB+BAO +eCM		$HB+H_0$ +eCMB+BAO+ H_0			
					Fit param	neters					
	$\Omega_b h^2$	0.0226	64 ± 0.00050	0.02229 ± 0.00037		0.02211 ± 0.00034		0.02244 ± 0.0	00035 (0.02223 ± 0.00033	
	$\Omega_c h^2$	0.113	38 ± 0.0045	0.1126 ± 0.0035		0.1162	2 ± 0.0020	0.1106 ± 0.0	030	0.1153 ± 0.0019	
	Ω_Λ	0.72	0.721 ± 0.025		.019	0.707	7 ± 0.010	0.740 ± 0.0	15	$0.7135^{+0.0095}_{-0.0096}$	
	$10^9 \Delta_R^2$	2.4	2.41 ± 0.10		.084	2.48	$84^{+0.073}_{-0.072}$	$2.396^{+0.07}_{-0.07}$	9 '8	2.464 ± 0.072	
Q	n_s	0.97	72 ± 0.013	0.9646 ± 0	.0098	0.95	$79^{+0.0081}_{-0.0082}$	$0.9690^{+0.00}_{-0.00}$	91)90	0.9608 ± 0.0080	
J	τ	0.08	39 ± 0.014	0.084 ± 0	.013	0.07	$79^{+0.011}_{-0.012}$	0.087 ± 0.0	013	0.081 ± 0.012	
	Derived parameters										
	t_0 (Gyr)	13.74 ± 0.11		13.742 ± 0	.077	13.800	0 ± 0.061	13.702 ± 0.0	69	13.772 ± 0.059	
	$H_0 (\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1})$	70.0 ± 2.2		70.5 ± 1	.6	68.76	5 ± 0.84	71.6 ± 1.4	Ļ	69.32 ± 0.80	
	σ_8	0.82	0.821 ± 0.023		0.810 ± 0.017		$22^{+0.013}_{-0.014}$	0.803 ± 0.0	16	$0.820_{-0.014}^{+0.013}$	
	Ω_b	0.0463 ± 0.0024 0		0.0449 ± 0	0.0449 ± 0.0018		8 ± 0.00098	0.0438 ± 0.0	015 (0.04628 ± 0.00093	
	Ω_c	0.233 ± 0.023		0.227 ± 0	0.227 ± 0.017		0 ± 0.0094	0.216 ± 0.014		$0.2402^{+0.0088}_{-0.0087}$	
	Zeq	3265^{+106}_{-105}		3230 ± 8	1	3312	2 ± 48	3184 ± 70		3293 ± 47	
	Zreion	10.6 ± 1.1		10.3 ± 1	.1	10.0	0 ± 1.0	10.5 ± 1.1		10.1 ± 1.0	
		Planck+WP		- Planck+WP+		highL Planck+lei		ensing+WP+highL	Planck-	$\kappa + w P + mgnL + BAO$	
	Parameter	Best fit	68% limits	Best fit	68% 1	imits	Best fit	68% limits	Best fit	68% limits	
	$\Omega_{\rm b}h^2$	0.022032	0.02205 ± 0.00028	0.022069	0.02207 ±	- 0.00027	0.022199	0.02218 ± 0.00026	0.022161	0.02214 ± 0.00024	
	$\Omega_{\rm c}h^2$	0.12038	0.1199 ± 0.0027	0.12025	0.1198 ±	0.0026	0.11847	0.1186 ± 0.0022	0.11889	0.1187 ± 0.0017	
	$100\theta_{\rm MC}$	1.04119	1.04131 ± 0.00063	1.04130	1.04132 ±	- 0.00063	1.04146	1.04144 ± 0.00061	1.04148	1.04147 ± 0.00056	
	τ	0.0925	$0.089^{+0.012}_{-0.014}$	0.0927	0.091	+0.013 -0.014	0.0943	$0.090^{+0.013}_{-0.014}$	0.0952	0.092 ± 0.013	
(<i>n</i> _s	0.9619	0.9603 ± 0.0073	0.9582	0.9585 ±	- 0.0070	0.9624	0.9614 ± 0.0063	0.9611	0.9608 ± 0.0054	
\	$\ln(10^{10}A_s)$	3.0980	$3.089^{+0.024}_{-0.027}$	3.0959	3.090 ±	0.025	3.0947	3.087 ± 0.024	3.0973	3.091 ± 0.025	
	$\overline{\Omega_{\Lambda}}$	0.6817	$0.685^{+0.018}_{-0.016}$	0.6830	0.685	+0.017 -0.016	0.6939	0.693 ± 0.013	0.6914	0.692 ± 0.010	
	σ_8	0.8347	0.829 ± 0.012	0.8322	0.828 ±	- 0.012	0.8271	0.8233 ± 0.0097	0.8288	0.826 ± 0.012	
	Z _{re}	11.37	11.1 ± 1.1	11.38	11.1 :	± 1.1	11.42	11.1 ± 1.1	11.52	11.3 ± 1.1	
	H_0	67.04	67.3 ± 1.2	67.15	67.3 -	± 1.2	67.94	67.9 ± 1.0	67.77	67.80 ± 0.77	
	Age/Gyr	13.8242	13.817 ± 0.048	13.8170	13.813 -	± 0.047	13.7914	13.794 ± 0.044	13.7965	13.798 ± 0.037	
	$100\theta_*$	1.04136	1.04147 ± 0.00062	1.04146	1.04148 ±	- 0.00062	1.04161	1.04159 ± 0.00060	1.04163	1.04162 ± 0.00056	
	$r_{ m drag}$	147.36	147.49 ± 0.59	147.35	147.47	± 0.59	147.68	147.67 ± 0.50	147.611	147.68 ± 0.45	

WMAP 9

Hinshaw+ (2013)

Planck (2013)

What are the central values?

Have things changed?

Are things consistent?

Adam Amara

RELATIVE ENTROPY

Constraints from Data A neter transformations

Seehars et al (2014)

Kullback & Leibler (1951)

Adam Amara

ETH zürich

NORMAL DISTRIBUTIONS

Adam Amara

2015

NORMAL DISTRIBUTIONS & LINEAR MODEL

Surprise
$$S = D(p_2||p_1) - \langle D \rangle$$

$$D(p_2||p_1) = \frac{1}{2} \left(\mu_1 - \mu_2 \right)^T \Sigma_1^{-1} (\mu_1 - \mu_2) + \operatorname{tr}(\Sigma_2 \Sigma_1^{-1}) - d - \log \det \left(\Sigma_2 \Sigma_1^{-1} \right) \right)$$

 $\langle D \rangle$ \checkmark Expected relative entropy

ETH zürich

APPLICATION TO WMAP CONSTRAINTS

Paramete	er	WMAP	+eCMB	+eCMB+BAO	+eC]	$MB+H_0$	+eCMB+	BAO+ H_0
			Fit parar	neters				
$\Omega_b h^2$	0.022	64 ± 0.00050	0.02229 ± 0.00037	0.02211 ± 0.00034	0.02244	± 0.00035	0.02223 ±	= 0.00033
$\Omega_c h^2$	0.113	38 ± 0.0045	0.1126 ± 0.0035	0.1162 ± 0.0020	0.1106	± 0.0030	0.1153 ±	- 0.0019
Ω_Λ	0.72	21 ± 0.025	0.728 ± 0.019	0.707 ± 0.010	0.740	± 0.015	0.7135	+0.0095 -0.0096
$10^9 \Delta_R^2$	2.4	41 ± 0.10	2.430 ± 0.084	$2.484^{+0.073}_{-0.072}$	2.39	$6^{+0.079}_{-0.078}$	2.464 ±	= 0.072
n_s	0.9	72 ± 0.013	0.9646 ± 0.0098	$0.9579_{-0.0082}^{+0.0081}$	0.969	$0^{+0.0091}_{-0.0090}$	$0.9608 \pm$	= 0.0080
τ	0.0	89 ± 0.014	0.084 ± 0.013	$0.079^{+0.011}_{-0.012}$	0.087	± 0.013	$0.081 \pm$	= 0.012
			V	ş				
		Data co	mbination ^a	D	$\langle D \rangle$	S	$S/\sigma(D)$	
	WMAP	\rightarrow	WMAP + eCMB	2.1	1 1.7	0.4	0.5	
	WMAP + eCMB	\rightarrow	WMAP + eCMB + 2	BAO 1.3	3 1.0	0.3	0.8	
	WMAP + eCMB	\rightarrow	WMAP + eCMB + 2	H0 0.4	4 0.3	0.1	0.1	
	WMAP + eCMB	\rightarrow	WMAP + eCMB + 2	BAO + HO = 0.9	9 1.1	-0.2	-0.2	

WMAP: Bennett+ 2013 eCMB: SPT (Keisler+ 2011) and ACT (Das+ 2011) BAO: 6dFGS (Beutler+ 2011), SDSS (Padmanabhan+ 2012, Anderson+ 2012), and WiggleZ (Blake+ 2012) H0: Riess+ 2009

	Parameter	WMAP		+eCMB +eCM		MB+BAO +eCM		$HB+H_0$ +eCMB+BAO+ H_0			
					Fit param	neters					
	$\Omega_b h^2$	0.0226	64 ± 0.00050	0.02229 ± 0.00037		0.02211 ± 0.00034		0.02244 ± 0.0	00035 (0.02223 ± 0.00033	
	$\Omega_c h^2$	0.113	38 ± 0.0045	0.1126 ± 0.0035		0.1162	2 ± 0.0020	0.1106 ± 0.0	030	0.1153 ± 0.0019	
	Ω_Λ	0.72	0.721 ± 0.025		.019	0.707	7 ± 0.010	0.740 ± 0.0	15	$0.7135^{+0.0095}_{-0.0096}$	
	$10^9 \Delta_R^2$	2.4	2.41 ± 0.10		.084	2.48	$84^{+0.073}_{-0.072}$	$2.396^{+0.07}_{-0.07}$	9 '8	2.464 ± 0.072	
Q	n_s	0.97	72 ± 0.013	0.9646 ± 0	.0098	0.95	$79^{+0.0081}_{-0.0082}$	$0.9690^{+0.00}_{-0.00}$	91)90	0.9608 ± 0.0080	
J	τ	0.08	39 ± 0.014	0.084 ± 0	.013	0.07	$79^{+0.011}_{-0.012}$	0.087 ± 0.0	013	0.081 ± 0.012	
	Derived parameters										
	t_0 (Gyr)	13.74 ± 0.11		13.742 ± 0	.077	13.800	0 ± 0.061	13.702 ± 0.0	69	13.772 ± 0.059	
	$H_0 (\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1})$	70.0 ± 2.2		70.5 ± 1	.6	68.76	5 ± 0.84	71.6 ± 1.4	Ļ	69.32 ± 0.80	
	σ_8	0.82	0.821 ± 0.023		0.810 ± 0.017		$22^{+0.013}_{-0.014}$	0.803 ± 0.0	16	$0.820_{-0.014}^{+0.013}$	
	Ω_b	0.0463 ± 0.0024 0		0.0449 ± 0	0.0449 ± 0.0018		8 ± 0.00098	0.0438 ± 0.0	015 (0.04628 ± 0.00093	
	Ω_c	0.233 ± 0.023		0.227 ± 0	0.227 ± 0.017		0 ± 0.0094	0.216 ± 0.014		$0.2402^{+0.0088}_{-0.0087}$	
	Zeq	3265^{+106}_{-105}		3230 ± 8	1	3312	2 ± 48	3184 ± 70		3293 ± 47	
	Zreion	10.6 ± 1.1		10.3 ± 1	.1	10.0	0 ± 1.0	10.5 ± 1.1		10.1 ± 1.0	
		Planck+WP		- Planck+WP+		highL Planck+lei		ensing+WP+highL	Planck-	$\kappa + w P + mgnL + BAO$	
	Parameter	Best fit	68% limits	Best fit	68% 1	imits	Best fit	68% limits	Best fit	68% limits	
	$\Omega_{\rm b}h^2$	0.022032	0.02205 ± 0.00028	0.022069	0.02207 ±	- 0.00027	0.022199	0.02218 ± 0.00026	0.022161	0.02214 ± 0.00024	
	$\Omega_{\rm c}h^2$	0.12038	0.1199 ± 0.0027	0.12025	0.1198 ±	0.0026	0.11847	0.1186 ± 0.0022	0.11889	0.1187 ± 0.0017	
	$100\theta_{\rm MC}$	1.04119	1.04131 ± 0.00063	1.04130	1.04132 ±	- 0.00063	1.04146	1.04144 ± 0.00061	1.04148	1.04147 ± 0.00056	
	τ	0.0925	$0.089^{+0.012}_{-0.014}$	0.0927	0.091	+0.013 -0.014	0.0943	$0.090^{+0.013}_{-0.014}$	0.0952	0.092 ± 0.013	
(<i>n</i> _s	0.9619	0.9603 ± 0.0073	0.9582	0.9585 ±	- 0.0070	0.9624	0.9614 ± 0.0063	0.9611	0.9608 ± 0.0054	
\	$\ln(10^{10}A_s)$	3.0980	$3.089^{+0.024}_{-0.027}$	3.0959	3.090 ±	0.025	3.0947	3.087 ± 0.024	3.0973	3.091 ± 0.025	
	$\overline{\Omega_{\Lambda}}$	0.6817	$0.685^{+0.018}_{-0.016}$	0.6830	0.685	+0.017 -0.016	0.6939	0.693 ± 0.013	0.6914	0.692 ± 0.010	
	σ_8	0.8347	0.829 ± 0.012	0.8322	0.828 ±	- 0.012	0.8271	0.8233 ± 0.0097	0.8288	0.826 ± 0.012	
	Z _{re}	11.37	11.1 ± 1.1	11.38	11.1 :	± 1.1	11.42	11.1 ± 1.1	11.52	11.3 ± 1.1	
	H_0	67.04	67.3 ± 1.2	67.15	67.3 -	± 1.2	67.94	67.9 ± 1.0	67.77	67.80 ± 0.77	
	Age/Gyr	13.8242	13.817 ± 0.048	13.8170	13.813 -	± 0.047	13.7914	13.794 ± 0.044	13.7965	13.798 ± 0.037	
	$100\theta_*$	1.04136	1.04147 ± 0.00062	1.04146	1.04148 ±	- 0.00062	1.04161	1.04159 ± 0.00060	1.04163	1.04162 ± 0.00056	
	$r_{ m drag}$	147.36	147.49 ± 0.59	147.35	147.47	± 0.59	147.68	147.67 ± 0.50	147.611	147.68 ± 0.45	

WMAP 9

Hinshaw+ (2013)

Planck (2013)

APPLICATION TO CMB DATA

Data	bination ^a	Gaussian approximation ^b					
			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 3	\rightarrow	WMAP 5	7.7	2.2	5.5	5.3	0.001
WMAP 5	\rightarrow	WMAP 7	1.4	1.0	0.4	0.6	0.2
WMAP 7	\rightarrow	WMAP 9	1.5	1.2	0.3	0.4	0.3
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002
WMAP $9 + SPT$	\rightarrow	Planck + WP + SPT	27.8	6.6	21.2	6.5	0.0002
Planck	\rightarrow	Planck + WP	1.2	2.2	-0.9	-0.9	0.08

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

Adam Amara

APPLICATION TO CMB DATA

Data	bination ^a	Gaussian approximation ^b					
			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 3	\rightarrow	WMAP 5	7.7	2.2	5.5	5.3	0.001
WMAP 5	\rightarrow	WMAP 7	1.4	1.0	0.4	0.6	0.2
WMAP 7	\rightarrow	WMAP 9	1.5	1.2	0.3	0.4	0.3
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002
WMAP $9 + SPT$	\rightarrow	Planck + WP + SPT	27.8	6.6	21.2	6.5	0.0002
Planck	\rightarrow	Planck + WP	1.2	2.2	-0.9	-0.9	0.08

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

APPLICATION TO CMB DATA

Data	bination ^a	Gaussian approximation ^b					
			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 3	\rightarrow	WMAP 5	7.7	2.2	5.5	5.3	0.001
WMAP 5	\rightarrow	WMAP 7	1.4	1.0	0.4	0.6	0.2
WMAP 7	\rightarrow	WMAP 9	1.5	1.2	0.3	0.4	0.3
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002
WMAP $9 + SPT$	\rightarrow	Planck + WP + SPT	27.8	6.6	21.2	6.5	0.0002
Planck	\rightarrow	Planck + WP	1.2	2.2	-0.9	-0.9	0.08

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

APPLICATION TO CMB DATA

Data	bination ^a	Gaussian approximation ^b					
			D	$\langle D \rangle$	S	$S/\sigma(D)$	p-value ^d
BOOMERANG	\rightarrow	WMAP 9	22.5	18.4	4.1	1.6	0.07
WMAP 3	\rightarrow	WMAP 5	7.7	2.2	5.5	5.3	0.001
WMAP 5	\rightarrow	WMAP 7	1.4	1.0	0.4	0.6	0.2
WMAP 7	\rightarrow	WMAP 9	1.5	1.2	0.3	0.4	0.3
WMAP 9	\rightarrow	WMAP $9 + SPT$	4.3	2.1	2.2	2.1	0.04
WMAP 9	\rightarrow	Planck + WP	29.8	7.9	21.9	6.5	0.0002
WMAP $9 + SPT$	\rightarrow	Planck + WP + SPT	27.8	6.6	21.2	6.5	0.0002
Planck	\rightarrow	Planck + WP	1.2	2.2	-0.9	-0.9	0.08

BOOMERANG: MacTavish et al. (2003) WMAP 3, 5, 7, 9: Spergel et al. (2007), Dunkley et al. (2009), Larson et al. (2011), and Bennett et al. (2013) WP: WMAP 9 polarisation data SPT: Story et al. (2013) Planck: Ade et al. (2013)

Where to next?

The Dark Energy Survey

Dark Energy Survey Collaboration

Adam Amara

ETH zürich

Overview

Blanco telescope at CTIO

- 4m primary focus
- built new dedicated camera 570 megapixel
- 2.2 deg² field of view
- thick CCDs for near infrared light

Two multiband surveys:

- 5000 deg sq. *grizY* to mag 24
- 30 deg² deep survey, 6 days cadence

Survey using four complementary techniques:

- 1. Cluster counts
- 2. Weak gravitational lensing
- 3. Large-scale structure
- 4. Supernovae

International collaboration:

300 members, 26 institutions, 7 countries

Survey: 2013-2018, 525 nights

The Dark Energy Survey

- • Two surveys:
 - Wide fields 5000 deg² in grizY to g=24
 - SN 1a repeated visits over 30 deg²
- Built new camera for CTIO Blanco telescope
 - 570 Mpixels
 - 3 deg² FOV
 - Facility instrument
- • Five-year Survey
 - 525 nights (Aug Feb)

moon to scale

Footprint

year 0 (science validation) - 180 deg², 10 tilings (full depth) year 1 - 2500 deg², 4 tilings, overlapping STP, VHS, BOSS 5 years - 5000 deg²

Adam Amara

Tracking Systematics Maps

exposure time

-61.0 65.0 67.0 68.0 70.0 72.0 73.0 75.0

RA

1000

900

800

700

600

500

400

300

200

RA

PSF ellipticity e1

ETH zürich

RA

Adam Amara

-45.0

-49.0

О Д -53.0

-57.0

Shape Measurement Problems

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

Approach till now

Generic Shape measurement methods

Calculate calibration factor (minimising simulations)

Trend towards more complex methods

Toy Model: Measuring the Size of a 2D Gaussian

Adam Amara

Measurement Biases

$$\delta a_i \simeq -\frac{1}{2} F_{ij} F_{kl} B_{jkl} \propto 1/\text{SNR}^2$$
$$F_{ij} = \sum_p \frac{1}{\sigma_p^2} \frac{\partial f}{\partial a_i} \frac{\partial f}{\partial a_j}$$
$$B_{ijk} = \sum_p \frac{1}{\sigma_p^2} \frac{\partial f}{\partial a_i} \frac{\partial^2 f}{\partial a_j \partial a_k}$$

Refregier, AA, + 2013

Shape Measurement Problems

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

Approach till now	Our new approach - MCCL
Generic Shape measurement methods	Specific analysis need only work for specific data (data centric)
Calculate calibration factor (minimising simulations)	Simulation explicitly at the heart of analysis method (empirical calibrations)
Trend towards more complex methods	Simplest possible method that we can get away with (speed)

Ultra Fast Image Generator (UFig)

Speed the driving factor

As fast as SExtractor (or faster) Subaru Image (0.25 deg2,R~26,10k×8k) generated in: 30sec on a laptop 30µsec per galaxy

HOPE: A Python Just-In-Time compiler for astrophysical computations

Akeret et al 2014 http://hope.phys.ethz.ch

10			
-	2		
	-	9	
6	24	-	
4	6		
1			

	Python (NumPy)	Numba	Cython	Nuitka (NumPy)	PyPy (NumPy)	numexpr (8 cores)	HOPE	C++
Fibonacci	57.4	65.7 ^{<i>a</i>}	1.1	26.7	21.1	_	1.1	1.0
Quicksort	79.4	b	4.6	61.0	45.8		1.1	1.0
Pi sum	27.2	1.0	1.1	13.0	1.0		1.0	1.0
10 th order	2.6	2.2	2.1	1.2	12.1	1.4	1.1	1.0
Simplify	1.4	1.5 ^{<i>ab</i>}	1.8	1.4	23.2	0.6	0.015	1.0
Pairwise	1357.8	18	1.0	1247.7	277.8		17	1.0
distance	(8.7)	1.0	1.0	(9.5)	(60.4)		1.7	1.0
Star PSF	265.4	250.4 ^{<i>a</i>}	46.2	234.6	339.5		2.2	1.0

Calibrating Shear measurement

Bruderer et al (2015)

Adam Amara

Bruderer et al (2015)

Science Verification Results

Cosmlogy	DES Collaboration (arXiv:1507.05603)
Shear Catalogs	Jarvis et al (arXiv:1507.05603)
Photometric redshift	Bonnett et al (arXiv:1507.05909)
Systematics maps	Leistedt et al (arXiv:1507.05647)
Shear Power Spectra	Becker et al (arXiv:1507.05598)

Cosmic Shear

Jarvis et al (arXiv:1507.05603)

Agreement between Im3shape and NGMix better than 5%

Redshift

Adam Amara

ETH zürich

Shear Power Spectrum

Cosmology

Robustness

