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CMB lensing
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Figure 1.2: Illustration of gravitational lensing of CMB photons by large-scale
structure (adapted from [10]).

reconstructing these lenses from the observed CMB we can obtain crucial infor-

mation on e.g. dark energy or the geometry of the universe. Several experiments

will provide high quality CMB data in the next few years, e.g. full-mission Planck

data including polarization, ACT/ACTPol, Polarbear and SPT/SPTpol.

The contribution of this thesis, presented in Chapter 5, is a thorough analysis

of how the reconstructed lensing information can be combined with the primary

CMB data to perform reliably a joint parameter estimation. Such joint analy-

ses are important to break degeneracies that limit the information that can be

extracted from the CMB fluctuations laid down at recombination. The joint anal-

ysis is non-trivial because the part of the lensing information that is present in

the primary CMB power spectrum as well as in the lensing reconstruction is po-

tentially double-counted. We quantify the temperature-lensing cross-correlation

analytically, finding two physical contributions and confirming the results with

simulated lensed CMB maps. This cross-correlation has not been considered be-

fore and it could have turned out to be anywhere between zero and unity. We

also use simulations to test approximations for the likelihood of the lensing re-
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deflected by dark matter
Image credit: ESA

Oldest light we can observe: CMB
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Many unlensed patches

Unlensed

LensedImage credit: cosmostat.org 
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Many unlensed patches

Unlensed

LensedImage credit: cosmostat.org, ESA/Planck 

Global power spectrum

http://cosmostat.org
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Unlensed

Lensed
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ISW and lensing-SZ, we calculate
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where the s is a place holder denoting either the ISW
or SZ contribution.

B. SZ Trispectrum

In addition to the lensing contributions to the trispec-
trum above, we consider contributions from the inverse
Compton scattering of the CMB photons. The SZ con-
tribution to the trispectrum is given by [17, 25]:

TΘ
ij = g4ν

∫ zmax

0

dz
dV

dz

∫ Mmax

Mmin

dM
dn(M, z)

dM

× |ỹi(M, z)|2 |ỹj(M, z)|2 , (8)

where gν is the spectral function of the SZ effect,
V (z) is the comoving volume of the universe integrated
to a redshift of zmax = 4, M is the virial mass such
that [log10(Mmin), log10(Mmax)] = [11, 16], dn/dM is the

FIG. 1: The impact of varying the lensing scaling parameter
on the lensed CMB temperature power spectrum, for AL =
[0,2,5,10].

mass function of dark matter halos as rendered by [18]
utilizing the linear transfer function of [19], and ỹ is the
dimensionless two-dimensional Fourier transform of the
projected Compton y-parameter, given via the Limber
approximation [20] by:

ỹl =
4πrs
l2s

∫ ∞

0

dxx2y3D(x)
sin(lx/ls)

lx/ls
, (9)

where the scaled radius x = r/rs and ls = dA/rs such
that dA is the angular diameter distance and rs is the
scale radius of the three-dimensional radial profile y3D
of the Compton y-parameter. This profile is a function
of the gas density and temperature profiles as modeled
in [21]. Hence, we incorporate the contributions obtained
from the SZ effect along with those from lensing, lensing-
ISW, and lensing-SZ effects to the covariance matrix in
Eqn. 3.

C. The Weak Lensing Scaling Parameter AL

To first order in φ, the weak lensing of the CMB
anisotropy trispectrum can be expressed as the con-
volution of the power spectrum of the unlensed tem-
perature Cl and that of the weak lensing potential
Clφφ [15, 22, 23]. The magnitude of the lensing poten-
tial power spectrum can be parameterized by the scaling
parameter AL, defined as

Cφφ
l → ALC

φφ
l . (10)

Thus, AL is a measure of the degree to which the ex-
pected amount of lensing appears in the CMB, such that
a theory with AL = 0 is devoid of lensing, while AL = 1
renders a theory with the canonical amount of lensing.
Any inconsistency with unity represents an unexpected
amount of lensing that needs to be explained with new
physics, such as dark energy or modified gravity [15, 24].
The impact of this scaling parameter on the lensed CMB
temperature power spectrum can be seen in Fig. 1. Qual-
itatively, AL smoothes out the peaks in the power spec-
trum and can therefore also be viewed as a smoothing
parameter in addition to its scaling property. Given that
AL primarily affects the temperature power spectrum on
small angular scales, we also explore the possibility that
it deviates from unity as secondary non-Gaussianities are
accounted for in the analysis.Image credit: Smidt+ (2010) 
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First detection: X-correl with galaxies
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We can incorporate this scale dependence into the
analysis by considering a bispectrum of the form

bℓ1,ℓ2,ℓ3 ∝ ℓ−0.6
1 ℓ−0.6

2 Fℓ3 (42)

To quantify the effect of scale dependence on the lensing
estimator, we compute the correlation between this shape
and the point source shape (Eq. (32)), using the Fisher
matrix formalism [93]. According to this, the Fisher ma-

trix element between two bispectra b(α)
ℓ1ℓ2ℓ3

, b(β)
ℓ1ℓ2ℓ3

is de-
fined by
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)

(43)
To a good approximation, when bispectra are estimated
from data, the covariance matrix is given by:

Cov(b(α), b(β)) = f−1
skyF

−1
αβ (44)

When we compute the Fisher matrix for the point source
(Eq. (32)) and scale-dependent (Eq. (42)) shapes at
WMAP and NVSS noise levels, we find a correlation co-
efficient ∼ 0.95. At this level of correlation, the point
source shape and SZ shape can not be distinguished to
1σ, unless a 6σ detection of the point source shape can
also be made. Since we do not find any evidence for point
source contamination in the data (Fig. 15), we conclude
that the difference between the point source and SZ bis-
pectra should be negligible in the context of the WMAP
and NVSS data sets.

As an additional check, we tried modifying our point
source simulations by giving each point source an aℓm ∝
ℓ−0.6 profile, and SZ frequency dependence (Eq. (40)),
including the negative sign. This crude procedure is of
course not an accurate method for simulating SZ in de-
tail, but does incorporate two qualitative features which
distinguish SZ from point sources at WMAP resolution:
the scale dependence (Eq. 41) and frequency dependence
(Eq. 40). We find that the systematic errors in lensing
(obtained from Monte Carlo simulations as described in
§VII) are within the range of point source models previ-
ously considered, showing that neither of these deviations
from pure point source behavior significantly affects our
method.

Finally, there is one assumption in our point source
model which we can check explicitly for the case of SZ:
that clustering is unimportant on scales of l ≃ 400 (see
Eq. 30). This can be seen directly from Fig. 18; the
clustering term is dominated by the Poisson term by an
order of magnitude.

IX. FINAL RESULT AND DISCUSSION

In Tab. I and Fig. 19, we show our final result: an esti-
mated value of Cφg

b in bandpowers, together with statisti-
cal and systematic uncertainties. Our procedure for com-
bining errors is as follows. We combine the errors from
beam asymmetry (§VI A) and beam uncertainty (§VI B)

FIG. 19: Final result from Tab. I, showing statistical errors
alone (blue/inner error bars) and statistical + systematic er-
rors (red/outer).

into a “total beam” error assuming that the two are com-
pletely correlated. We obtain a “total Galactic” error
from Galactic CMB foregrounds by combining the dust
and free-free systematic errors (§VI C) assuming corre-
lated errors, and double the result to account for syn-
chrotron (where no template is available on the relevant
angular scales). We obtain a “total point source” error
by combining the errors from unresolved and resolved
sources, assuming that the two are correlated. (As we
have shown in §VIII, the “point source” errors apply to
the total systematic error from CMB point sources and
the thermal SZ effect.) We then obtain our final result
by combining the statistical, total beam, total Galactic,
and point source errors, assuming that the four are un-
correlated.

What is the total statistical significance of our detec-
tion? To assess this, we combine our bandpower esti-
mates into a single estimator Ĉ, giving each bandpower a
weight proportional to its fiducial expectation value Cφg

b,fid

(not the measured value in Tab. I) and inversely propor-
tional to its total (statistical + systematic) variance:

Ĉ =

∑
b

(
Cφg

b,fid/Var(Ĉφg
b )
)

Ĉφg
b

∑
b(C

φg
b,fid)2/Var(Ĉφg

b )
(45)

where the denominator has been included to normalize
⟨Ĉ⟩ = 1 in the fiducial model. We find Ĉ = 1.15 ± 0.34,
i.e. a 3.4σ detection.

Throughout this paper, we have assumed a fiducial
cosmology, NVSS redshift distribution, and galaxy bias
when computing statistical errors by Monte Carlo simu-
lation, and when constructing the (S+N)−1 filters in the
analysis pipeline. To what extent do our results depend
on the fiducial model? Our Cφg

ℓ bandpowers and error
bars depend only on the fiducial power spectra CTT

ℓ , Cgg
ℓ

used in Monte Carlo simulations, not on the details of

WMAP CMB lensing X NVSS galaxies

Smith, Zahn & Doré (2007); Hirata, Ho et al. (2008)

Figure 1.2: Illustration of gravitational lensing of CMB photons by large-scale
structure (adapted from [10]).

reconstructing these lenses from the observed CMB we can obtain crucial infor-

mation on e.g. dark energy or the geometry of the universe. Several experiments

will provide high quality CMB data in the next few years, e.g. full-mission Planck

data including polarization, ACT/ACTPol, Polarbear and SPT/SPTpol.

The contribution of this thesis, presented in Chapter 5, is a thorough analysis

of how the reconstructed lensing information can be combined with the primary

CMB data to perform reliably a joint parameter estimation. Such joint analy-

ses are important to break degeneracies that limit the information that can be

extracted from the CMB fluctuations laid down at recombination. The joint anal-

ysis is non-trivial because the part of the lensing information that is present in

the primary CMB power spectrum as well as in the lensing reconstruction is po-

tentially double-counted. We quantify the temperature-lensing cross-correlation

analytically, finding two physical contributions and confirming the results with

simulated lensed CMB maps. This cross-correlation has not been considered be-

fore and it could have turned out to be anywhere between zero and unity. We

also use simulations to test approximations for the likelihood of the lensing re-
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Now these are ~20-sigma signals
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Planck CMB lensing X {NVSS, MaxBCG, SDSS, WISE}

Planck lensing paper (2013). More recently: {Planck15, ACT, SPT} X {BOSS, CFHTLenS, DES}; 
lots of great work by Alex van Engelen, Blake Sherwin, and others

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Fig. 17. Cross-spectra of the Planck MV lensing potential with several galaxy catalogs, scaled by the signal-to-noise weighting
factor Ag�

L defined in Eq. (52). Cross-correlations are detected at approximately 20� significance for the NVSS quasar catalog, 10�
for SDSS LRGs, and 7� for both MaxBCG and WISE.

to demonstrate the power of our public lensing map. In addition
to the correlations presented here, there is a powerful correlation
with the cosmic infrared background (CIB). Correlation of the
Planck lensing potential with the CIB fluctuations as probed by
the highest frequency Planck channels is observed at greater than
40� in significance, and has been subjected to a more detailed
analysis and modelling, which is presented in an accompanying
paper, Planck Collaboration XVIII (2014).

To predict expected levels of correlation for a given galaxy
catalogue, we use the Limber approximation (Limber 1954) with
a simple linear bias model, in which the cross-spectrum between
two mass tracers is given by

Cg�
L =

Z
d�Kg

L(�)K�L(�)P(k = L/�, �), (48)

where � is conformal distance and P(k, �) is the 3D matter power
spectrum for wavenumber k at conformal lookback time �. K�
and Kg are kernels associated with lensing and with the galaxy
catalogue of interest respectively, and are given by

K�L(�) = �3⌦mH2
0

L2
�

a

 
�⇤ � �
�⇤�

!
,

Kg
L(�) =

dN
dz

dz
d�

b(z)
�
. (49)

Here b(z) is a redshift-dependent linear bias parameter, and
dN/dz describes the redshift distribution of the galaxy popula-
tion. As with the lensing-ISW bispectrum, we can construct a
simple pseudo-CL estimator for the cross correlation using

Ĉg�
L =

f �1
sky,j

2L + 1

X

M

gLM�̂
⇤
LM , (50)

where fsky,j is the sky fraction common to both the lens recon-
struction and the catalogue, and gLM is the harmonic transform

of the galaxy fractional overdensity. Denoting the positions of
the objects p in the catalogue as n̂p, the transform is given by

gLM =
1

Ngg

X

p

Y⇤LM(n̂p), (51)

where Ngg is the surface density of objects in gal/steradian. With
a fiducial model Cg�,fid.

L for the cross spectrum obtained using
Eq. (48), the minimum-variance estimator for its overall ampli-
tude is

Âg� = Ng�
X

L

(2L + 1)Cg�,fid.
L Ĉg�

L

(Cgg
L + Ngg)(C��L + N��L )

⌘
X

L

Ag�
L Ĉg�

L , (52)

where Cgg
L is the signal power spectrum of the catalogue, which

can be estimated using Eq. (48) with Kg for both weight func-
tions. Here we have defined the spectrum Ag�

L as a scaling at
each multipole L of the cross-correlation power spectrum. The
normalization Ng� is given by

Ng� =

2
666666664
X

L

(2L + 1)
⇣
Cg�,fid.

L

⌘2

(Cgg
L + Ngg)(C��L + N��L )

3
777777775

�1

. (53)

In Fig. 17 we plot the contributions to Âg� as a function of
L for several surveys that have significant correlations with the
Planck MV lensing potential: the NVSS quasar catalogue, the
MaxBCG cluster catalogue, an SDSS LRG catalogue, and an
infrared catalogue from the WISE satellite. The error bars for
each correlation are measured from the scatter of simulated lens
reconstructions correlated with each catalogue map, and are in
generally good agreement (at the 20% level) with analytical ex-
pectations. These catalogues are discussed in more detail below.

1. NVSS Quasars: The NRAO VLA Sky Survey (NVSS;
Condon et al. 1998) is a catalogue of approximately two

22
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Future

CMB lensing maps will soon be signal-dominated 
(e.g. Simons Observatory & CMB-S4) 

Galaxy surveys collect more galaxies at high redshift 
(e.g. DESI, Euclid & LSST)7.3 Cross Correlations with CMB Lensing 127

Figure 50. Redshift kernel for CMB lensing (blue solid) and for cosmic shear with LSST (red solid),
together with the expected redshift distribution of LSST galaxies (red dashed) and the CMB source redshift
(blue dashed).

highly complementary to galaxy clustering measurements. Galaxy surveys measure luminous matter while
CMB lensing maps directly probe the underlying dark matter structure. Thus these cross-correlations provide
a clean measurement of the relation between luminous matter and dark matter. Cross-correlations between
independent surveys are also more robust against details of selection functions or spatially inhomogeneous
noise that could add spurious power to auto-correlations. Additionally, while CMB lensing maps are projected
along the line-of-sight, galaxy redshift surveys provide information about the line-of-sight distance; thus cross-
correlating redshift slices of galaxy populations allows for tomographic analysis of the CMB lensing signal
(see, e.g., [?], [?]). These benefits can lead to improved constraints on cosmology: for example, with LSST
galaxies, it has been shown that including cross-correlation with CMB lensing can substantially improve
constraints on neutrino masses [?].

CMB lensing was first detected using such a cross-correlation [?, ?]. Since these first detections, cross-
correlation analyses have been performed with tracers at many wavelengths, including optically-selected
sources [?, ?, ?, ?, ?], infrared-selected sources [?, ?, ?], sub-mm-selected galaxies [?], and maps of flux from
unresolved dusty star-forming galaxies [?, ?, ?, ?].

These cross-correlations between CMB lensing and galaxy clustering have already been used to test key
predictions of general relativity, such as the growth of structure [?] as a function of cosmic time, and the
relation between curvature fluctuations and velocity perturbations [?]. Cross-correlations using CMB-S4
lensing data will enable percent level tests of general relativity on cosmological scales (see the Dark Energy
Chapter for futher details).

On the timescale of the CMB-S4 experiment, a number of large surveys are expected be concurrent or
completed, including DESI, WFIRST, Euclid, and LSST. Due to the high number density of objects detected,
wide area coverage, and accurate redshifts, the precision of cross-correlation measurements with these surveys
will be much higher than those performed to date. For example, the amplitude of cross-correlation between
the CMB-S4 convergence map and the galaxy distribution from LSST is expected to be measured to sub-
percent levels.

CMB-S4 Science Book
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What can we learn?

Matter amplitude σ8(z) 

Expansion history / dark energy 

Sum of neutrino masses 

Primordial non-Gaussianity / inflation 

Galaxy bias and galaxy formation 

More?



The future is bright
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X

CMB lensing 

AdvACT 

SPT-3G 

Simons Observatory 

CMB-S4

Galaxies 
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DESI 
Hyper Suprime-Cam 
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LSST 
WFIRST 
SPHEREx?
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Driving question: 

If our models all work and we can mitigate all systematics, 
and if CMB-S4 and LSST will deliver, what can we hope for?

A forecast for CMB-S4 X LSST



LSST number density
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5

higher redshift, we assume dn/dz = 0.14 arcmin�2 at
5  z  6, and dn/dz = 0.014 arcmin�2 at 6  z  7.
MS: Justify using https://arxiv.org/pdf/1704.06535.pdf
We split the galaxy sample into six broad to-
mographic redshift bins given by (z

min

, z
max

) 2
{(0, 0.5), (0.5, 1), (1, 2), (2, 3), (3, 4), (4, 7)}, noting that
there is no need for finer redshift bins in our application
because the CMB lensing redshift kernel is very broad,
although it is important to use more than one redshift
bin to be able to re-weight the redshift bins to match
the CMB lensing kernel. Assuming a survey area of
18, 000 deg2, the total number of galaxies in each red-
shift bin is N

tot

2 {9.3⇥ 108, 1.55⇥ 109, 1.40⇥ 109, 2.4⇥
108, 9.4 ⇥ 107, 4.3 ⇥ 107}, i.e. there are about a billion
objects in each of the low-redshift bins, and more than
40 million objects at z > 4. MS: what sky fraction?
compare against goldrush paper and cite We assume a
fiducial linear galaxy bias of b(z) = 1 + z following for
example [? ].

MS: OLD: Note that we do not use realistic sky ar-
eas, but instead assume f

sky

= 0.5 for all surveys. Could
improve code to use correct sky areas, but not sure how
to get covariance of two surveys with di↵erent sky ar-
eas. Could argue that results are cleaner with fixed and
equal f

sky

because can then simply rescale constraints for
di↵erent f

sky

, maybe? MS: We do not include photo-z
errors. Hope this is not too bad because lensing kernel is
very broad. Could matter for tracer cross tracer though.
Maybe include photo z errors in forecasts?

FIG. 3. Redshift distribution and tomographic redshift bins.
For CMB lensing (solid black), we plot the dn/dz that would
yield C if integrated over, with arbitrary normalization. It
peaks at z ' 2 and drops at lower and higher z, although this
is di�cult to see because of the logarithmic vertical axis.
MS: check again if CMB lensing dndz really gives correct
CMB lensing Ckappa.

C. DESI number counts

NBGS

tot

= 9.64e + 06 Say how we split in redshift bins
etc.

D. SDSS number counts

Say how we split in redshift bins etc.

E. CMB lensing-LSS correlation coe�cient

The performance of the cross-correlation analyses de-
pends on the cross-correlation coe�cient

r
`

=
Ĉg

`q
Ĉ

`

Ĉgg

`

(8)

between the reconstructed CMB lensing map  and ob-
served galaxy samples g, where the power spectra Ĉ in-
clude shot noise and lensing reconstruction noise. Fig. 4
shows the correlation coe�cient between LSST samples
and lensing reconstruction with CMB-S4 noise levels.
The low-redshift LSST sample at 0  z  0.5 peaks at
75% correlation with  on very large scales, ` = 2, and
drops rapidly with higher `. For higher redshift LSST
samples, the peak correlation with the lensing map is
at higher `, because a fixed physical scale is mapped to
smaller angular scale at higher redshift. We also show
the low-redshift DESI BGS sample in Fig. 4 because this
also has a substantial correlation with , reaching 60%
at low `.

For any given angular scale `, the lensing field gets
contributions from a wide range of scales and redshifts,
satisfying k �(z) = `. Therefore, combining the LSS sam-
ples, which probe di↵erent scales and redshifts, increases
the correlation coe�cient with . This is shown by the
black line in Fig. 4, where the LSST and DESI BGS sam-
ples are optimally combined to maximize the correlation
coe�cient of the combined tracer with the lensing map
(see Ref. [10] for a derivation of these weights). The
combined LSS sample is more than 94% correlated with
the CMB-S4 lensing reconstruction at `  20, reaching a
peak correlation of 96%. This high correlation coe�cient
motivates exploring sample variance cancellation tech-
niques. On smaller scales, the cross-correlation drops,
but is still 60% at ` = 1000.

IV. POWER SPECTRUM SIGNALS AND
SIGNAL-TO-NOISE

V. SIMPLE ORDER OF MAGNITUDE
ESTIMATES

The goal of this section is to give order of magnitude es-
timates for the parameter constraints computed in more
detail in the rest of the paper.

Following Gorecki et al. (2014), adding z>4 dropouts; 66 arcmin-2; MS & Seljak 1710.09465

Dropout 
galaxies

https://arxiv.org/abs/1710.09465


Correlation of CMB lensing and galaxies
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FIG. 3. Correlation r = Cg(CCgg)�1/2 of CMB-S4 lensing
reconstruction with six tomographic LSST samples (orange),
with the low-redshift DESI BGS sample (green dashed), and
with the optimal combination of these LSS tracers, as a func-
tion of wavenumber `. The correlation includes CMB-S4 lens-
ing noise and galaxy shot noise. These noises and the redshift
overlap determine the correlation coe�cient. The Limber ap-
proximation would wrongly predict the low-` correlation of
individual redshift bins to be 5 to 10% higher than the exact
result shown here.
MS: does this depend on fsky?

MS: discuss Fig. 4, maybe quote total SNR of some
power spectra.

III. PHYSICAL EFFECTS AND POWER
SPECTRUM SIGNALS

Before proceeding with forecasts for the above exper-
iments, we briefly motivate, describe, and parameter-
ize the e↵ects that we are after: Scale-dependent bias
from primordial non-Gaussianity, the impact of the mat-
ter amplitude on lensing and clustering, and the scale-
dependent bias caused by neutrino masses. For each ef-
fect we discuss the advantages of measuring them using
cross-correlations between CMB lensing and galaxy clus-
tering rather than auto-correlations.

A. Local primordial non-Gaussianity

1. Motivation to measure fNL

The large-scale structure of the universe is sourced by
primordial density fluctuations generated in the early
universe. Measuring the statistical properties of large-
scale structures using galaxy surveys and CMB lensing
can thus constrain the physics that generated primordial
fluctuations. A non-Gaussian primordial probability dis-
tribution function (pdf) can only be produced by certain
inflation models, involving for example multiple fields or
higher-derivative operators. Here we will focus on the
local type of primordial non-Gaussianity. In this case,
the primordial potential is the sum of a random Gaus-
sian field and its square, �(x)+f

NL

(�2(x)�h�2i), which
has a non-Gaussian pdf. If we observe this with a large
amplitude, f

NL

& 1, it will rule out single-field models
of the inflationary expansion of the early universe in a
robust way [25, 26]. This is one of few known observa-
tional means to rule out a whole class of currently viable
early-universe models.
In practice the measurement is challenging because the

threshold signal f
NL

= 1 separating between single-field
and multi-field models has a very small e↵ect on observ-
ables. The best constraints, f

NL

= 0.8± 5.0, come from
Planck’s CMB temperature and polarization measure-
ments [27].
Observations of late-time LSS can improve CMB con-

straints on f
NL

because they probe di↵erent Fourier
modes, and because they can exploit the Dalal et al. [4]
scale-dependent bias e↵ect. In brief, that e↵ect is gen-
erated as follows. Inflation models with multiple fields
can generate non-Gaussian correlations between long and
short wavelength modes, h�

l

�
s

�
s

i 6= 0. As a consequence,
the small-scale power spectrum of fluctuations in a region
depends on the realization of long wavelength modes in
that region. Dark matter halos and galaxies thus form
preferentially in regions where long-wavelength modes
are high. This leads to a scale-dependent bias between
the matter and galaxy density that scales as k�2 on
large scales [4]; see [28] for a recent review. Observ-
ing such scale-dependent galaxy bias from local primor-
dial non-Gaussianity would rule out single-field inflation
because correlations between long and short modes are
suppressed in all single-field inflation models [25, 26].

2. Motivation for cross-correlation measurement

Since the f
NL

signal from scale-dependent k�2 bias is
largest on large scales, the precision on f

NL

is limited
by cosmic variance in the volume of the galaxy survey.
As mentioned in the introduction, this cosmic variance
can be partially cancelled by observing biased and un-
biased tracers of large-scale structure and searching for
a scale-dependent di↵erence in their power spectra [3].
This is illustrated in Fig. 5 for the specific case of ob-
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C. Other LSS surveys

In our default forecasts, we also include number counts
from SDSS [39], BOSS [40] and DESI [41].

For SDSS, we assume the number density of r < 22
photometric redshifts obtained in Ref. [42] using the clus-
tering redshift technique [43–45]. We split the sample in
two tomographic redshift bins, one at 0  z  0.5 and
one at 0.5  z  0.8. For a survey area of 4, 800 deg2,
this givesN

tot

= 1.1⇥108 objects in each bin. We assume
the bias to be b(z) = 1 for z < 0.1 and b(z) = 1+(z�0.1)
for z � 0.1.

For BOSS, we use spectroscopic redshifts of luminous
red galaxies (LRGs) with the same number density as in
Table II of Ref. [46]. We use a single redshift bin 0  z 
0.9. On a sky area of 9, 329 deg2 this would give 1.3⇥106

galaxies. Splitting the sample into multiple redshift bins
does not improve our forecasts because we cross-correlate
against CMB lensing, so that redshift accuracy is much
less important than number density. We assume a bias
of b(z) = 1.7D̄�1(z) where D̄(z = 0) = 1.

For DESI, we use five redshift samples, with number
densities from Table 2.3 in Ref. [47]: The low-redshift
BGS sample at 0  z  0.5 with 9.6 ⇥ 106 objects and
bias b(z) = 1.34D̄�1(z), the LRG sample at 0.6  z  1.2
with 3.9 ⇥ 106 objects and bias b(z) = 1.7D̄�1(z), one
ELG sample at 0.6  z  0.8 with 3.5 ⇥ 106 objects
and bias b(z) = 0.84D̄�1(z), a second ELG sample at
0.8  z  1.7 with 1.3 ⇥ 107 objects and the same bias,
and a QSO sample at 0.6  z  1.9 with 1.4⇥106 objects
and bias 1.2D̄�1(z). In each case, the number of objects
refers to a survey area of 14, 000 deg2.

D. CMB lensing–LSS correlation coe�cient

The performance of the cross-correlation analyses de-
pends on the cross-correlation coe�cient

r` =
Cg

`q
Ĉ

` Ĉgg
`

(1)

between the measured CMB lensing convergence  and
the observed galaxy density �g, where the power spectra

Ĉ include lensing reconstruction noise and shot noise.
Fig. 5 shows the correlation coe�cient of tomographic
LSST redshift bins with lensing measurements expected
from CMB-S4.

The correlation of the low-redshift LSST bin at z =
0 � 0.5 with CMB lensing peaks at 70% on very large
scales, ` = 3, and drops on smaller scales. The LSST
samples at higher redshift reach their maximum corre-
lation with CMB lensing at higher `, corresponding ap-
proximately to the peak of the 3-D power spectrum at
k
peak

⇠ 2 ⇥ 10�2 hMpc�1, which is mapped to higher
` for higher redshift (`

peak

= k
peak

�(z) where � ranges
from �(z = 0.1) ⇠ 400h�1Mpc to �(z = 7) ⇠ 9h�1Gpc).

FIG. 5. Expected correlation coe�cient r` =
Cg

` (Ĉ
` Ĉgg

` )�1/2 of CMB-S4 lensing measurements with six
tomographic LSST samples (orange), with the low-redshift
DESI BGS sample (green dashed), and with the optimal
combination of these LSS tracers (black), as a function of
wavenumber `. The level of correlation is determined by the
redshift overlap between CMB lensing and LSS samples and
by their noise levels. The plot includes CMB-S4 lensing noise
and galaxy shot noise given by the number density in Fig. 4.
The Limber approximation would wrongly predict the low-`
correlation of individual redshift bins to be 5 to 10% higher
than the exact result shown here.

The low-redshift DESI BGS sample also has a substan-
tial correlation with CMB lensing, reaching up to 60% at
low `.
The tomographic redshift bins can be combined into a

single joint LSS sample, with redshift bins weighted to
match the CMB lensing kernel. Choosing these weights
such that they maximize the correlation coe�cient be-
tween the joint LSS sample and CMB lensing [48] gives
the correlation coe�cient shown in black in Fig. 5. The
combined LSS sample is more than 92% correlated with
the CMB-S4 lensing measurement at ` . 40, reaching a
maximal correlation of r = 94.6% at ` ' 10. This is com-
bining all LSST redshift bins and the DESI BGS sample.
Additionally including SDSS and all other DESI sam-
ples described above increases the maximal correlation
only mildly, to r = 94.8%. The high correlation coef-
ficient motivates exploring sample variance cancellation
techniques for these experiments. On smaller scales, the

CMB lensing and 
galaxy maps are 
up to 95% 
correlated
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tracers of the dark matter and are therefore only sensi-
tive to the parameter combination b

1

(z)�
8

(z), where b
1

is
a bias factor that is typically not well known, and �

8

(z)
is the rms of the matter density in a sphere of radius
8h�1Mpc at redshift z. Lensing observations or galaxy
surveys alone can therefore not provide accurate mea-
surements of �

8

(z) or the 3-D matter distribution.
As is well known, cross-correlating lensing and clus-

tering observations can break the above b
1

-�
8

degen-
eracy and determine the galaxy bias as a function of
redshift, e.g. using b

1

' Cgg/Cg, b2
1

' Cgg/C, or
b
1

' Cg/C. We can then obtain the 3-D matter dis-
tribution by dividing the observed galaxy density by the
estimated bias, �m(k, z) = �g(k, z)/b1(z). From that we
can compute the matter power spectrum as a function of
redshift, and its amplitude, �

8

(z). Even if bias is treated
as a scale-dependent function, b

1

(k, z), cross-correlating
lensing and clustering can significantly improve the un-
certainty of the matter power spectrum as a function of
redshift if the cross-correlation coe�cient between lens-
ing and clustering is high [27]. Maybe more futuristically,
a better understanding of galaxy formation might predict
the relation between dark matter and galaxies without
requiring a general bias expansion. In that case, lensing-
clustering cross-correlations could help inform parame-
ters of the galaxy formation models and thus improve
the inferred 3-D dark matter maps.

Measuring the 3-D distribution of dark matter o↵ers a
direct way to test the growth of structure and expansion
of the Universe as a function of time. Both depend on the
cosmological model, e.g. on the time evolution of the dark
energy equation of state or the sum of neutrino masses.
At low redshift, z . 0.5, the motivation is to improve
over current constraints. At higher redshift, only little is
known observationally about growth and expansion, so
that entering this regime has significant discovery poten-
tial, especially if we can measure the matter amplitude
�
8

(z) with sub-percent-level precision.
Sample variance cancellation can help to improve con-

straints on galaxy bias parameters, because they enter
only the galaxy density but not the CMB lensing conver-
gence, which are both due to the same underlying 3-D
Fourier modes at redshifts where they overlap. Improved
bias constraints can then improve the precision of the
3-D matter distribution.

For simplicity we will only quote the precision of �
8

and b
1

assuming all other cosmological parameters are
fixed. If other cosmological parameters are allowed to be
free, the cross-correlation measurements constrain cer-
tain combinations of them, for example roughly �

8

⌦m at
low redshift [28]. Our forecasts should therefore be inter-
preted as constraints on such parameter combinations.

B. Motivation for f
NL

from cross-correlations

Primordial non-Gaussianity of the local type, parame-
terized by the amplitude f

NL

, induces a scale-dependent

FIG. 1. Illustration of the primordial non-Gaussianity signal
from scale-dependent galaxy bias [7], in an idealized toy ex-
ample where galaxies (blue) perfectly trace the matter fluctu-
ations observed by CMB lensing (black), Ĉgg

` = b2Ĉ
` . The

signal for f
NL

= 1 is smaller than cosmic variance (shaded
regions), but the ratio of the observed galaxy and lensing
power spectrum realizations has no cosmic variance, so that
the non-Gaussianity amplitude f

NL

can be measured with in-
finite precision from a single Fourier mode [6]. In practice,
this is limited by nonzero stochasticity between the observed
CMB lensing convergence and galaxy density.

galaxy bias that scales as f
NL

k�2 on large scales [7]. We
review this e↵ect and the motivation to measure it in
Appendix B 1. Since the e↵ect is largest on large scales,
the precision of f

NL

is limited by the number of large-
scale Fourier modes in the volume of the galaxy survey.
This cosmic variance noise can be partially cancelled by
observing unbiased and biased tracers of LSS and search-
ing for a scale-dependent di↵erence in their power spectra
[6]. Fig. 1 illustrates this idea for an idealized toy model
where CMB lensing (an unbiased tracer) and galaxy num-
ber counts (a biased tracer) are assumed to originate
from the exact same Fourier modes. The prospect of
sample variance cancellation is an important motivation
for searching for f

NL

in CMB-lensing–galaxy-clustering
cross-correlations rather than in galaxy auto-spectra.

The second motivation for measuring f
NL

from cross-
correlations is its potential superiority over galaxy auto-
spectra in terms of systematics (e.g., [18, 29]). On the
large scales where the k�2 scale-dependent bias is largest,
systematics like stellar contamination can add galaxy
auto-power and thus mimic an f

NL

signal. This has been
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High-z galaxies improve cross-correlation with CMB lensing 

Imaging surveys like LSST can use dropout technique to 
include Lyman break galaxies (LBGs) at z=4-7 

HSC/Goldrush found 0.5 million z=4-7 LBGs on 100 deg2, 
so LSST could see ~100 million on 18,000 deg27.3 Cross Correlations with CMB Lensing 127

Figure 50. Redshift kernel for CMB lensing (blue solid) and for cosmic shear with LSST (red solid),
together with the expected redshift distribution of LSST galaxies (red dashed) and the CMB source redshift
(blue dashed).

highly complementary to galaxy clustering measurements. Galaxy surveys measure luminous matter while
CMB lensing maps directly probe the underlying dark matter structure. Thus these cross-correlations provide
a clean measurement of the relation between luminous matter and dark matter. Cross-correlations between
independent surveys are also more robust against details of selection functions or spatially inhomogeneous
noise that could add spurious power to auto-correlations. Additionally, while CMB lensing maps are projected
along the line-of-sight, galaxy redshift surveys provide information about the line-of-sight distance; thus cross-
correlating redshift slices of galaxy populations allows for tomographic analysis of the CMB lensing signal
(see, e.g., [?], [?]). These benefits can lead to improved constraints on cosmology: for example, with LSST
galaxies, it has been shown that including cross-correlation with CMB lensing can substantially improve
constraints on neutrino masses [?].

CMB lensing was first detected using such a cross-correlation [?, ?]. Since these first detections, cross-
correlation analyses have been performed with tracers at many wavelengths, including optically-selected
sources [?, ?, ?, ?, ?], infrared-selected sources [?, ?, ?], sub-mm-selected galaxies [?], and maps of flux from
unresolved dusty star-forming galaxies [?, ?, ?, ?].

These cross-correlations between CMB lensing and galaxy clustering have already been used to test key
predictions of general relativity, such as the growth of structure [?] as a function of cosmic time, and the
relation between curvature fluctuations and velocity perturbations [?]. Cross-correlations using CMB-S4
lensing data will enable percent level tests of general relativity on cosmological scales (see the Dark Energy
Chapter for futher details).

On the timescale of the CMB-S4 experiment, a number of large surveys are expected be concurrent or
completed, including DESI, WFIRST, Euclid, and LSST. Due to the high number density of objects detected,
wide area coverage, and accurate redshifts, the precision of cross-correlation measurements with these surveys
will be much higher than those performed to date. For example, the amplitude of cross-correlation between
the CMB-S4 convergence map and the galaxy distribution from LSST is expected to be measured to sub-
percent levels.
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Power spectra: CMB-S4 & LSST
5

FIG. 4. Left panel: Angular auto-power spectra of CMB-S4 lensing  map (black) and LSST galaxy density �g (colored). Solid
lines show the signal power (not including lensing noise or shot noise), and shaded regions show 1� error bars assuming the
Gaussian covariance (27), fsky = 0.5, minimum variance lensing noise expected for CMB-S4, and LSST number density shown
in Fig. 2. Dashed lines show lensing reconstruction noise (black) and shot noise (colored). Right panel: Angular cross-spectra
between CMB lensing and LSST galaxy density.
MS: Why is BAO better visible at high z?
MS: Check similar plot for non-LSST spectra. Consistent with Font-Ribera 2013?

serving galaxies (a biased tracer of DM) and CMB lensing
(an unbiased tracer of DM), assuming that they tracer
the same underlying LSS Fourier modes. The prospect of
sample variance cancellation is an important motivation
for searching for f

NL

in CMB-lensing galaxy-clustering
cross-correlations rather than in galaxy auto-spectra.

MS: maybe move paragraph to discussion at the end,
shorten As also mentioned in the introduction, a sec-
ond advantage of measuring f

NL

from cross-correlations
rather than auto-correlations is its superiority in terms
of systematics. On the large scales where the k�2 scale-
dependent bias is largest, systematics like stellar con-
tamination can add power and thus mimic an f

NL

signal.
This has been a major concern for previous f

NL

analyses,
e.g. [29? ]. While known systematics can of course be
subtracted, it is rather di�cult to establish that there are
no unknown or poorly understood systematics that could
lead to an enhanced galaxy auto power spectrum on large
scales. Cross-correlations can be helpful in this regard
because they are una↵ected by many (additive) observa-
tional systematics: Only systematics that contribute in
a correlated way to CMB lensing and galaxy counts can
change the cross-correlation power spectrum. Measuring
primordial non-Gaussianity from lensing-clustering cross-
correlations should therefore be more robust than mea-
suring it from clustering auto-power spectra alone (also
see, e.g., [11]).

MS: cite recent roland de putter, olivier dore papers,
marilena loverde, core 1612.08270, spherex

3. Scale-dependent bias

Quantitatively, the non-Gaussian coupling between
long and short wavelength modes imposed by local pri-
mordial non-Gaussianity rescales the bias b

g

between
galaxies (forming in collapsed dark matter halos) and
dark matter as

b
g

(z) ! b
g

(z) [1 + f
NL

�(k, z)] , (2)

where the fractional bias change relative to
Gaussian fluctuations is (e.g. [30]) MS: cite
https://arxiv.org/pdf/1611.04901v1.pdf? Cite Neal
Dalal, early data papers. also 1611.04901, dan green,
olivier dore, roland de putter? maybe also 1507.03550
and other alonso papers?

�(k, z) =
�b

g

b
g

= 3
(b

g

� 1)

b
g

⌦
m,0

�
c

k2T (k)D(z)

✓
H

0

c

◆
2

. (3)

Here, b
g

(z) is the fiducial linear bias of the galaxy sam-
ple assuming Gaussian fluctuations, �

c

= 1.686 is the lin-
ear overdensity of spherical collapse, T (k) is the transfer
function normalized to unity on large scales, D(z) is the
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cross-correlation drops, but is still 60% for the combined
LSS sample at ` = 1000.

It may be surprising that the cross-correlation coef-
ficient of the combined LSS sample can be as high as
95% despite the CMB lensing kernel being very broad
(Fig. 4) and extending all the way to z ⇠ 1100. The rea-
son is that at low ` the scales at cosmological distances
� (typically a few h�1Gpc) correspond to a very low k
(k = `/�, so for ` = 10 typically k ⇠ 10�2 hMpc�1).
Since this k is lower than the peak of the power spec-
trum at k

peak

⇠ 2 ⇥ 10�2 hMpc�1, the power spectrum
has more power on smaller scales, so the projection in-
tegral picks most of the power from low values of � and
thus from low z. At higher ` we move to scales smaller
than the peak of the power spectrum and the contribu-
tion from z > 4 LSS becomes more and more important.
Moreover, even though LSST has some sources at z > 4
they are sparse and the corresponding shot noise reduces
the cross-correlation coe�cient.

One can also rephrase the above sample variance can-
cellation argument using delensing: The more the tracers
are correlated with the true CMB lensing, the better they
delens the CMB modes; the delensed B mode power fol-
lows by replacing C ! C(1 � ⇢2), where ⇢ is the
cross-correlation coe�cient of optimally combined trac-
ers with the true CMB lensing convergence without lens
reconstruction noise [48]. Thus, the more one can de-
lens by combining multiple tracers, the more noise one
removes from the cross-correlation of those tracers with
CMB lensing. It is important to emphasize that the trac-
ers need to cover as much redshift range as possible.

IV. POWER SPECTRA

Assuming the above experiment specifications, we can
compute angular power spectra, their expected statistical
uncertainties, and how they change in presence of scale-
dependent bias caused by f

NL

or neutrino mass.

A. Angular power spectra and noise

In the left panel of Fig. 6 we show angular auto-power
spectra of CMB-S4 lensing and LSST clustering. The
shaded regions show the expected uncertainty

�(CXX
` ) =


2

f
sky

(2`+ 1)

⇣
ĈXX

`

⌘
2

�
1/2

(2)

due to sampling variance, CMB lensing reconstruction
noise, and shot noise (included in ĈXX). The spectra
are signal-dominated up to at least ` = 1000 thanks to
the low CMB lensing noise and high LSST number den-
sity. The overall shape of the angular power spectra is
similar to the 3-D matter power spectrum, with the peak
at the physical scale k�1

peak

mapped to smaller angular
scales (higher `) for increasing redshift.

`
max

SNR of CXX 500 1000 2000


CMB

233 406 539

BOSS LRG z=0-0.9 140 187 230

SDSS r < 22 z=0-0.5 247 487 936

SDSS r < 22 z=0.5-0.8 247 487 936

DESI BGS z=0-0.5 230 417 665

DESI ELG z=0.6-0.8 158 210 256

DESI ELG z=0.8-1.7 150 194 225

DESI LRG z=0.6-1.2 184 267 349

DESI QSO z=0.6-1.9 44.8 48.8 50.8

LSST i < 27 (3yr) z=0-0.5 250 496 982

LSST i < 27 (3yr) z=0.5-1 250 496 979

LSST i < 27 (3yr) z=1-2 249 492 956

LSST i < 27 (3yr) z=2-3 245 469 830

LSST i < 27 (3yr) z=3-4 239 444 724

LSST i < 27 (3yr) z=4-7 224 387 555

TABLE I. Total signal-to-noise of auto-power spectra CXX
`

of CMB lensing convergence and galaxy density in tomo-
graphic redshift bins. We assume f

sky

= 0.5, `
min

= 2, and
`
max

2 {500, 1000, 2000} in di↵erent columns. The noise in-
cludes CMB-S4 lensing reconstruction noise and shot noise.

In Table I we show the total signal-to-noise ratio

SNR =

"
`
maxX

`=`
min

✓
CXX

`

�(CXX
` )

◆
2

#
1/2

(3)

of these auto-power spectra. The CMB-S4 lensing auto-
power spectrum has a signal-to-noise of 406 for `

max

=
1000. For `

max

= 2000 this improves only moderately
to a signal-to-noise of 539 because CMB lensing noise
becomes relevant at lensing scales ` > 1000. The tomo-
graphic LSS redshift bins have comparable signal-to-noise
for `

max

= 1000; for example the photometric redshift
samples of SDSS, the DESI BGS low-redshift sample,
and each of the 6 LSST redshift bins have a total signal-
to-noise of ⇠ 400. Going to `

max

= 2000 improves the
signal-to-noise of most of these samples to ⇠ 900.

The cross-spectra between CMB lensing and galaxy
clustering can also be measured very accurately. This is
shown in the right panel of Fig. 6 and in Table II. The
total signal-to-noise of those cross-spectra reaches more
than 200 for `

max

= 1000, and up to 400 for `
max

= 2000
in the case of the LSST redshift bin at z = 1�2 where the
CMB lensing kernel peaks. Even though the overall error
is larger than for auto-power, at low ` the two errors share
the sampling variance term, and upon taking the ratio of
the two measurements this error cancels out. This is the
basis of the sampling variance cancellation method.
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FIG. 6. Left panel: Angular auto-power spectra of CMB-S4 lensing convergence  (black) and LSST galaxy density (colored).
Solid lines show the signal power (not including lensing noise or shot noise), and shaded regions show 1� error bars assuming the
Gaussian covariance (14), f

sky

= 0.5, minimum variance lensing noise expected for CMB-S4, and LSST number density shown
in Fig. 4. Dashed lines show lensing reconstruction noise (black) and shot noise (colored). Right panel: Angular cross-spectra
between CMB lensing and LSST galaxy density.

`
max

SNR of C
CMB

X 500 1000 2000

BOSS LRG z=0-0.9 77.3 117 159

SDSS r < 22 z=0-0.5 88.3 167 284

SDSS r < 22 z=0.5-0.8 88.3 167 284

DESI BGS z=0-0.5 50.1 93.5 144

DESI ELG z=0.6-0.8 50.7 73.5 97

DESI ELG z=0.8-1.7 103 148 185

DESI LRG z=0.6-1.2 86.7 133 182

DESI QSO z=0.6-1.9 74.9 94.5 108

LSST i < 27 (3yr) z=0-0.5 78.1 150 258

LSST i < 27 (3yr) z=0.5-1 112 202 338

LSST i < 27 (3yr) z=1-2 144 259 406

LSST i < 27 (3yr) z=2-3 121 219 324

LSST i < 27 (3yr) z=3-4 101 182 261

LSST i < 27 (3yr) z=4-7 94 167 229

TABLE II. Like Table I but for CMB-lensing–clustering cross-
spectra Cg

` .

B. f
NL

signal and signal-to-noise

Fig. 7 shows the fractional f
NL

signal from scale-
dependent bias for galaxy auto-spectra Cgg (solid), and
for CMB lensing–galaxy clustering cross-spectra Cg

(dashed).

For galaxy auto-spectra, f
NL

= 1 can change the signal
by more than 10% on large scales at high redshift (` . 5,
z & 2). At ` = 20 the signal is still 5% at high redshift,
but less than a percent at low redshift. The lower panel
of Fig. 7 compares these signals against the cosmic vari-
ance of each spectrum, without combining any measure-
ments or exploiting sample variance cancellation. This
shows that the f

NL

signal-to-noise can be larger than
0.1� per mode at ` . 30 for high-redshift tracers. For
lower-redshift tracers this is significantly smaller; for ex-
ample, the f

NL

signal-to-noise of the z = 0.5 � 1 bin is
0.05� per mode at ` = 2, and 0.01� per mode at ` = 20.
The g cross-spectra have a larger fractional f

NL

sig-
nal than gg auto-spectra on large scales, which is a conse-
quence of computing line-of-sight integrals exactly rather
than with the Limber approximation. However, the f

NL

signal-to-noise of each g is always less than the corre-
sponding gg auto-spectrum. The reason for this is that
the cross-correlation coe�cient r` between CMB lensing
and each individual tomographic redshift bin, shown in
Fig. 5 above, is relatively small, which adds noise to the
g cross-spectrum that is not present in gg spectra. This
can be seen explicitly by writing the fractional uncer-
tainty of Cg

` in terms of the correlation coe�cient r`
(also see Eq. (C3) below):

�(Cg
` )

Cg
`

=


1 + r�2

`

(2`+ 1)f
sky

�
1/2

. (4)

The trends of the f
NL

signal and signal-to-noise with
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turn out somewhat better than suggested by the analyt-
ical estimates here. One possible reason for this (other
than possible inaccuracies of the analytical estimates) is
that the full Fisher analysis takes into account all pos-
sible power spectra and their scale- and redshift depen-
dence rather than combining LSS tracers before measur-
ing spectra as assumed for the analytical estimates above.

For Gaussian initial conditions f
NL

= 0, the sam-
ple variance cancellation technique can improve measure-
ments of galaxy bias, because the bias enters linearly in
g and quadratically in gg power spectra. Indeed, we
can just replace f

NL

! b in all equations above to get
the precision of bias measurements, with the same im-
provement factor of (1� r2` )

�1/2, if we assume that �
8

is
perfectly known. If we marginalize over �

8

, the sample
variance cancellation for bias still works in the low-noise
limit but not in general [49]. We confirmed this using the
full Fisher analysis described in the next section, finding
that in absence of noise (setting lensing noise and shot
noise to zero and adding a biased tracer with number
density matched to the CMB lensing kernel) the bias er-
ror becomes extremely small even when we marginalize
over �

8

. However for realisitic noise levels the marginal-
ization over �

8

does matter, which makes it di�cult in
practice to exploit sample variance cancellation for bias
when marginalizing over �

8

. Note that while the sample
variance cancellation technique can in principle improve
bias it cannot directly improve �

8

, which enters g and
gg power spectra in the same way.

VI. FISHER ANALYSIS SETUP

The above analytical calculations are only rough esti-
mates because we did not include all power spectra and
we did not marginalize over parameters that could be de-
generate with the e↵ects we are looking for. We improve
this using a numerical Fisher analysis that we describe in
this section. The results will be discussed in Section VII.

In the baseline analysis, we include all auto- and cross-
spectra of the CMB-S4 lensing convergence and the 14
tomographic LSS redshift bins defined in Section III.
With these N = 15 fields, we have 15 auto-spectra and
N(N � 1)/2 = 105 cross-spectra, obtaining 120 power
spectra in total.1 Not all spectra are relevant though;
for example cross-spectra between di↵erent redshift bins
are very small even if beyond-Limber corrections are in-
cluded. Some of the most relevant spectra are listed in
Tables I and II. The power spectra would capture all
cosmological information if the observed lensing conver-
gence and galaxy density were Gaussian random fields.

1 While it is straightforward to make idealized forecasts for 120
power spectra with Gaussian covariances, it may be more chal-
lenging to include all those spectra in an actual data analysis,
especially when relying on simulated covariances. In that case
one may want to combine and compress the observations before
forming power spectra as discussed in Appendix D.

For simplicity we will assume this throughout, ignoring
information from higher-order statistics.
We assume Gaussian covariances for the power spectra,
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` , Ĉi0j0

`0 ) =
�``0
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sky
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This ignores non-Gaussian corrections to the CMB lens-
ing covariance [50–52], the LSS clustering covariance
(e.g., [53–55] and references therein), and their cross-
covariance. Ĉ are power spectra that would be ob-
served without any noise bias subtraction, i.e. they
are the sum of signal and noise. The upper indices
i, j, i0, j0 2 {

CMB

, �LSSTz=0�0.5, �
LSST

z=0.5�1

, . . . } label the ob-
servable fields.
To speed up covariance inversion, we define a large

one-dimensional data vector that starts with all spectra
at `

min

, continues with all spectra at `
min

+ 1, etc:
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contains N(N + 1)/2 spectra Cij
` with j � i. Assum-

ing Eq. (14), the covariance cov(d,d) is then a block-
diagonal matrix with `

max

� `
min

+ 1 blocks of size
N(N + 1)/2 ⇥ N(N + 1)/2, which is easily inverted if
the number of fields is N . 100. The Fisher matrix at
the power spectrum level is then

Fab =
`
maxX

`=`
min

@d`

@✓a
[cov(d`,d`)]

�1

@d`

@✓b
. (17)

We evaluate this without binning in `.2

The above analysis assumes that all experiments ob-
serve the same patch of sky, because it includes cross-
spectra between all observed fields in the data vector
and covariance. The forecast therefore includes (a) sam-
ple variance cancellation from observing the same modes
multiple times, and (b) breaking of parameter degenera-
cies using g cross-spectra. Both e↵ects can only be ex-
ploited in a joint analysis of CMB-S4 CMB lensing and
LSS clustering on the same patch of sky. To determine
how much these e↵ects contribute to the forecasted pa-
rameter precisions, we will compare against a modified
forecast, where we assume that each observed field (CMB
lensing map or galaxy redshift bin) is on an independent
patch of the sky. In that case there is no sky overlap
between any two observed fields so that all fields are in-
dependent from each other and neither (a) nor (b) are
used. We implement this by dropping all cross-spectra

2 Binning is less accurate and does not speed up our implementa-
tion because binning the covariance is slow.

For Gaussian covariance, different ell are uncorrelated, 
so Fisher matrix is
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turn out somewhat better than suggested by the analyt-
ical estimates here. One possible reason for this (other
than possible inaccuracies of the analytical estimates) is
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For Gaussian initial conditions f
NL

= 0, the sam-
ple variance cancellation technique can improve measure-
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provement factor of (1� r2` )

�1/2, if we assume that �
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density matched to the CMB lensing kernel) the bias er-
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. Note that while the sample
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bias it cannot directly improve �
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, which enters g and
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generate with the e↵ects we are looking for. We improve
this using a numerical Fisher analysis that we describe in
this section. The results will be discussed in Section VII.
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spectra of the CMB-S4 lensing convergence and the 14
tomographic LSS redshift bins defined in Section III.
With these N = 15 fields, we have 15 auto-spectra and
N(N � 1)/2 = 105 cross-spectra, obtaining 120 power
spectra in total.1 Not all spectra are relevant though;
for example cross-spectra between di↵erent redshift bins
are very small even if beyond-Limber corrections are in-
cluded. Some of the most relevant spectra are listed in
Tables I and II. The power spectra would capture all
cosmological information if the observed lensing conver-
gence and galaxy density were Gaussian random fields.

1 While it is straightforward to make idealized forecasts for 120
power spectra with Gaussian covariances, it may be more chal-
lenging to include all those spectra in an actual data analysis,
especially when relying on simulated covariances. In that case
one may want to combine and compress the observations before
forming power spectra as discussed in Appendix D.

For simplicity we will assume this throughout, ignoring
information from higher-order statistics.
We assume Gaussian covariances for the power spectra,
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This ignores non-Gaussian corrections to the CMB lens-
ing covariance [50–52], the LSS clustering covariance
(e.g., [53–55] and references therein), and their cross-
covariance. Ĉ are power spectra that would be ob-
served without any noise bias subtraction, i.e. they
are the sum of signal and noise. The upper indices
i, j, i0, j0 2 {

CMB

, �LSSTz=0�0.5, �
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z=0.5�1

, . . . } label the ob-
servable fields.
To speed up covariance inversion, we define a large
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ing Eq. (14), the covariance cov(d,d) is then a block-
diagonal matrix with `
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+ 1 blocks of size
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We evaluate this without binning in `.2

The above analysis assumes that all experiments ob-
serve the same patch of sky, because it includes cross-
spectra between all observed fields in the data vector
and covariance. The forecast therefore includes (a) sam-
ple variance cancellation from observing the same modes
multiple times, and (b) breaking of parameter degenera-
cies using g cross-spectra. Both e↵ects can only be ex-
ploited in a joint analysis of CMB-S4 CMB lensing and
LSS clustering on the same patch of sky. To determine
how much these e↵ects contribute to the forecasted pa-
rameter precisions, we will compare against a modified
forecast, where we assume that each observed field (CMB
lensing map or galaxy redshift bin) is on an independent
patch of the sky. In that case there is no sky overlap
between any two observed fields so that all fields are in-
dependent from each other and neither (a) nor (b) are
used. We implement this by dropping all cross-spectra

2 Binning is less accurate and does not speed up our implementa-
tion because binning the covariance is slow.
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MS: maybe copy more old notes here
The full Fisher analysis above automatically includes

sample variance cancellation, because it includes over-
sampling of the same modes by including cross-spectra
between all observed fields and the covariance between
all measurable spectra. To test how much the sampling
variance cancellation aspect contributes to the total pa-
rameter constraints, we compare against a modified anal-
ysis that tries to exclude sample variance cancellation.
In that analysis we assume that each field (CMB lensing
map or galaxy redshift bin) is observed on its own patch
of sky, so that there is no sky overlap between any two
observed fields. Di↵erent observed fields then probe dif-
ferent volumes, so that no Fourier mode in the Universe is
probed by more than one measurement, and no sample
variance cancellation can be exploited. We implement
this by dropping all cross-spectra between two di↵erent
fields from the data vector and setting all cross-spectra
to zero in covariances, i.e.

No sky overlap: d
`

=
�
C11

`

, C22

`

, . . . , CNN

`

�
,

cov
⇣
Cii

`

, Cjj

`

⌘
= �

ij

2

2`+ 1
(Cii

`

)2, (30)

excluding, e.g., hgLSST
z=0�0.5

,
CMB

i and hgLSST
z=0�0.5

, gDESI

BGS

i
from the data vector and covariance. We then compute
the improvement factor due to sample variance cancella-
tion by comparing the analysis with perfect sky overlap
between all fields against that with no sky overlap be-
tween any two fields. 2

MS: Mention discussion of combined maps and spectra
in appendix.

VI. FISHER ANALYSIS RESULTS

A. Primordial non-Gaussianity

1. Summary of setup

We first compute the precision of the non-Gaussian
amplitude f

NL

expected from a joint analysis of CMB-S4

2 A potential concern of the “no sample variance cancellation case”
without sky overlap is that we increase the total probed volume
by assuming that di↵erent fields are observed on di↵erent patches
of the sky, increasing the number of independent Fourier modes
that are measured. For example, for two samples, working on two
separate patches increases the total number of Fourier modes by
a factor two, which should reduce sample variance error bars
by a factor

p
2. This can unintentionally improve parameter

constraints, for example when constraining �8 assuming fixed
bias parameters. The “no sample variance cancellation” analysis
might therefore be better than it should be, so that we might un-
derestimate the true improvement factors due to sample variance
cancellation. A practical argument for comparing analyses with
and without sky overlap is that this can inform observing strate-
gies of CMB-S4 and LSST, quantifying how much gain there is if
the surveys are on the same patch of sky. MS: Does Pat agree?

FIG. 9. MS: Date: 20 Aug 2017
Constraints on primordial non-Gaussianity amplitude fNL as
a function of minimum wavenumber `min, for di↵erent LSS
surveys (colors), with full sky overlap between observations
(solid), and with no overlap between any two observed fields
(dashed), assuming fixed `max = 500 in all cases. As in
all other fNL plots, we marginalize over one bias amplitude
parameter per galaxy redshift bin and over f fake

NL defined in
Eq. (??) (otherwise there would be no degradation for non-
overlapping sky patches). Integrations along the line of sight
are computed exactly at `  50, and using the Limber ap-
proximation at ` > 50 where it matches the exact result.
MS: so having sky overlap just breaks a degeneracy that we in-
troduced by hand? is this really sample variance cancellation
then? MS: If marginalizing over �8, constraints without sky
overlap degrade quite a bit if `min & 5, but it does not a↵ect
constraints with sky overlap. So again, having sky overlap
helps to break degeneracies that are present when marginal-
izing over �8. Maybe mention.
MS: improvement from having sky overlap only helps if we
marginalize over f fake

NL . If not marginalizing over f fake
NL , we

can get full constraint directly from gg and sky overlap and
cross-correlation do not help.

lensing and galaxy clustering in SDSS, DESI and LSST.
We use the data vector (C, Cgi , Cgigj ) in the Fisher
analysis described above, where g

i

are broad galaxy red-
shift bins suitable for cross-correlation with CMB lensing
(see Section ??). Throughout this section, we marginal-
ize over one bias amplitude parameter per galaxy redshift
bin and over the f fake

NL

parameter rescaling the total mat-
ter power spectrum. To accurately model the large-scale
f
NL

signal we compute exact line-of-sight integrals on
large scales `  50 following Appendix A 2 b, and use the
Limber approximation only on small scales ` > 50.

2. Baseline results

Under the above assumptions, Fig. 9 shows the ex-
pected f

NL

precision as a function of the minimum multi-

Dalal+ (2008), Jeong, Komatsu & Jain (2009), Ginnantonio & Percival (2014), MS & Seljak 1710.09465
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Multi-field inflation
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sample variance cancellation, because it includes over-
sampling of the same modes by including cross-spectra
between all observed fields and the covariance between
all measurable spectra. To test how much the sampling
variance cancellation aspect contributes to the total pa-
rameter constraints, we compare against a modified anal-
ysis that tries to exclude sample variance cancellation.
In that analysis we assume that each field (CMB lensing
map or galaxy redshift bin) is observed on its own patch
of sky, so that there is no sky overlap between any two
observed fields. Di↵erent observed fields then probe dif-
ferent volumes, so that no Fourier mode in the Universe is
probed by more than one measurement, and no sample
variance cancellation can be exploited. We implement
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tion by comparing the analysis with perfect sky overlap
between all fields against that with no sky overlap be-
tween any two fields. 2
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in appendix.
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a factor two, which should reduce sample variance error bars
by a factor
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constraints, for example when constraining �8 assuming fixed
bias parameters. The “no sample variance cancellation” analysis
might therefore be better than it should be, so that we might un-
derestimate the true improvement factors due to sample variance
cancellation. A practical argument for comparing analyses with
and without sky overlap is that this can inform observing strate-
gies of CMB-S4 and LSST, quantifying how much gain there is if
the surveys are on the same patch of sky. MS: Does Pat agree?

FIG. 9. MS: Date: 20 Aug 2017
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NL
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S4 + LSST is sensitive to fNL=0.4 (Lmin=2) - fNL=1 (Lmin=20) 

Without CMB lensing, degrade by factor 10-20 

Without sky-overlap, degrade by factor 1.5-2 (SV cancellation) 

Without low-L Cgg, degrade by factor 2-3 

Without z>4 dropout galaxies, degrade by factor 2

Prospects for local fNL

MS & Seljak 1710.09465
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Need to measure CMB lensing and galaxy clustering on large 
scales (L<20) 

Star contamination affects low-L gg, potentially mimicking fNL 
  - Not relevant when just getting upper bound on fNL  

  - Know direction of our galaxy so could project out modes  
      as in Leistedt et al. (2014)  
 - Even without low-L gg, fNL=1 is possible 

Catastrophic redshift errors 
- Hope to calibrate using spec-z surveys  
- If global dn/dz known, data can determine outlier fraction so that catastrophic errors 
don’t degrade fNL 

-> ask me later

Challenges for local fNL

MS & Seljak 1710.09465
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between two di↵erent fields from the data vector and set-
ting all cross-spectra to zero in covariances, i.e.

No sky overlap: d` =
�
C11

` , C22

` , . . . , CNN
`

�
,

cov
⇣
Cii

` , C
jj
`

⌘
= �ij

2

2`+ 1
(Cii

` )
2, (18)

excluding, e.g., hgLSSTz=0�0.5,CMB

i and hgLSSTz=0�0.5, g
DESI

BGS

i
from the data vector and covariance.3

To marginalize over linear galaxy bias, we will rescale
the fiducial galaxy bias b(z) of each tomographic redshift
bin by a redshift-independent amplitude, b(z) ! Bib(z),
and marginalize over the bias amplitudes Bi of all to-
mographic redshift bins. This implicitly assumes that
the redshift-dependence within each tomographic red-
shift bin is known.

As a basic validation of our implementation of the
Fisher matrix in Eq. (17) we checked that if all power
spectra are included it numerically agrees with the Fisher
matrix at the field level given by Eqs. (5) and (6) above.
Below we will only use the Fisher analysis at the power
spectrum level Eq. (17) because it allows to exclude indi-
vidual power spectra from the analysis and analyze their
importance.

VII. FISHER ANALYSIS RESULTS

Based on the experiments, signals, and Fisher analysis
setup described above, we now present forecasts for �

8

(z),
primordial non-Gaussianity f

NL

, and neutrino mass.
The forecasts use all power spectra (C, Cgi , Cgigj ) of
CMB-S4 lensing convergence and tomographic LSS red-
shift bins of SDSS, DESI and LSST clustering as de-
scribed in the previous section.

A. Amplitude of matter fluctuations �
8

(z)

1. Setup

As motivated in Section IIA, the amplitude of matter
fluctuations as a function of redshift �

8

(z) carries im-

3 A potential concern of the foreacsts with no sky overlap is that
the independent patches probe a larger total volume, increasing
the number of independent Fourier modes that are measured. For
example, for two samples, working on two independent patches
increases the total number of Fourier modes by a factor two,
which should reduce sample variance error bars by a factor

p
2.

This can unintentionally improve parameter precisions, for exam-
ple when constraining �

8

assuming fixed bias parameters. The
analysis with no sky overlap might therefore be better than it
should be, so that we might underestimate the true improvement
factors caused by sample variance cancellation and breaking of
parameter degeneracies using g spectra. A practical argument
for comparing analyses with and without sky overlap is that this
can inform observing strategies of experiments, quantifying how
much gain there is if the surveys are on the same rather than
independent patches.

FIG. 9. Fractional statistical uncertainty of the amplitude of
matter fluctuations, �

8

, defined in broad redshift bins, z =
0�0.5, 0.5�1, 1�2, 2�3, 3�4, 4�7, 7�100, as a function of
`
max

. The forecast uses all power spectra of CMB-S4 lensing
and SDSS, DESI and LSST (i < 27, 3yr, z < 7) clustering,
and assumes `

min

= 20 and f
sky

= 0.5. Solid lines assume all
observations are on the same patch of sky, while dashed lines
assume all fields are observed on independent non-overlapping
patches (see end of Section VI). As in all other �

8

forecasts
we marginalize over one linear galaxy bias parameter in each
redshift bin, but ignore nonlinear galaxy bias that can degrade
the precision for high `

max

(see Section VIIA 5 for discussion).

portant information about the growth of structure and
the expansion of the Universe. To forecast the expected
precision of �

8

(z), we rescale the fiducial amplitude of
matter fluctuations in broad redshift bins,

P
mm

(k, z) !
X

i

(1 + si)
2Vi(z)Pmm

(k, z) (19)

where si ⌘ �
8,i/�8,fid�1 is the fractional change of �

8

in
the ith redshift bin. We work with seven broad redshift
bins for �

8

, defined by z = 0 � 0.5, 0.5 � 1, 1 � 2, 2 �
3, 3� 4, 4� 7, 7� 100, and treat the amplitude si in each
bin as a parameter in the Fisher analysis. The redshift
binning function is Vi(z) = 1 for zi,min

 z < zi,max

and
Vi(z) = 0 otherwise. We marginalize over linear galaxy
bias amplitude parameters Bi as described at the end of
Section VI (also see, e.g., Eq. (22) below).

2. Baseline results

Fig. 9 shows the forecasted precision of �
8

(z) bins as
a function of the highest wavenumber `

max

included in
the analysis. Using modes 20  `  200 on half the
sky, �

8

(z) can be determined to ⇠ 1% for all redshift
bins. Including smaller scales, 20  `  1000, improves
the precision to 0.2% to 0.3% in each redshift bin. This
subpercent-level precision on �

8

(z) can lead to impres-

Marginalize over one linear bias parameter per redshift bin; 
fixed cosmology; halofit Pmm(k,z); fsky=0.5 for CMB-S4 & LSST

1%

0.1%

MS & Seljak 1710.09465, see Modi+ (2017) for impact of nonlinear bias
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Marginalize over one sigma8(z) binned in broad redshift bins 
fixed cosmology; halofit Pmm(k,z); fsky=0.5 for CMB-S4 & LSST
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as shown recently [56], marginalizing over nonlinear bias
parameters can degrade �

8

forecasts like ours by a factor
of up to 5.5 Our forecasts assuming linear bias may thus
be overly optimistic, especially for high `

max

.
On the other hand, one might argue that treating all

nonlinear galaxy bias parameters as completely free pa-
rameters may be overly pessimistic, because by the time
we get data from CMB-S4 and LSST we might be able to
describe the galaxy-matter relation with more restrictive
models than now. For example, it may be feasible to pa-
rameterize nonlinear halo bias parameters as functions
of linear bias or halo mass (e.g., [57–59]). That would
reduce the number of free parameters in the model and
thus lead to tighter �

8

constraints than if all nonlinear
bias parameters are free and marginalized over. Realis-
tically, such relationships between bias parameters may
never be perfect, but even broad priors on nonlinear bias
parameters may help.

Additionally to theoretical progress, it is possible to
obtain observational priors on bias parameters by mea-
suring the anisotropic power spectrum in redshift space
or higher-order N-point functions. For example, mea-
surements of the bispectrum [60] and 3-point correla-
tion function [61] of spectroscopic SDSS BOSS galaxies
constrained the allowed value of the quadratic bias of
these galaxies (also see, e.g., [62] for DESI and [63] for
SPHEREx forecasts). These nonlinear bias constraints
could be used as a prior when modeling cross-correlations
with CMB lensing. Achieving our �

8

forecasts that are
based on just a single degree of freedom to model the
galaxy-matter connection might still be optimistic, but
there is hope that they could come within reach if nonlin-
ear galaxy bias can be better modeled or observationally
constrained in the future.

6. Measuring galaxy bias

Rather than marginalizing over galaxy bias and deter-
mining the matter amplitude �

8

as above, we can use
lensing-clustering cross-correlation measurements to de-
termine galaxy bias parameters while marginalizing over
�
8

. We show the expected precision of linear bias pa-
rameters for marginalized �

8

in Fig. 14, finding that the
bias can be measured rather accurately. For example, the

5 Even assuming only linear bias, the constraints of [56] are about
2-3 times weaker than the ones we find. Reasons for this may
be that Ref. [56] assumes lower number density for LSST (they
use the LSST i < 25 gold sample whereas we use the i < 27 3-
year sample), they use no SDSS or DESI observations, and their
CMB-S4 lensing noise does not include improvements from the
iterative EB estimator, making their lensing noise a few times
higher than ours. We also choose broader tomographic redshift
bins at z > 1 as described in Section III, which decreases the
uncertainty of �

8

in those bins. Additional di↵erences may be
due to di↵erent models of the g signal, noting that [56] employs
a more accurate model than the linearly biased halofit used here.

FIG. 14. Fractional precision of linear bias parameters
marginalized over the matter amplitude �

8

in broad redshift
bins, z = 0� 0.5, 0.5� 1, 1� 2, 2� 3, 3� 4, 4� 7, and 7� 100.
We assume `

min

= 20 and f
sky

= 0.5. Without sky overlap
(dashed), or without gg spectra (dotted), the constraints de-
grade by an order of magnitude. If �

8

was perfectly known
(not shown), most constraints for full sky overlap would im-
prove by a factor of ⇠ 4� 5 for high `

max

.

modes 20  `  200 can determine linear LSST bias pa-
rameters to about 1% precision, assuming f

sky

= 0.5 and
ignoring nonlinear bias. If smaller scales are included,
20  `  1000, the bias amplitudes can be measured
with 0.2 to 0.4% precision (except DESI QSO which is
slightly worse).
If we instead assume �

8

to be perfectly known, the bias
constraints improve by up to a factor of 5 for high `

max

,
showing that the degeneracy between �

8

and bias plays
an important role for our noise levels. This also explains
why the precision of �

8

and bias are similar when we mea-
sure one and marginalize over the other. If we decrease
noise su�ciently, and cover the CMB lensing kernel with
enough galaxies out to high redshift, this situation will
change at some point and bias can benefit from sam-
pling variance cancellation, so in principle it could be
determined much more accurately than �

8

which is al-
ways limited by sampling variance [49] (also see end of
Section V above). Our forecasts suggest that this may
require experiments beyond CMB-S4 and LSST, but we
leave a more detailed investigation for future work.

B. Local primordial non-Gaussianity

1. Setup

We continue with forecasts for local primordial non-
Gaussianity from its scale-dependent bias e↵ect. To allow
some freedom of the shape of the matter power spectrum,
we marginalize over a ‘fake’ parameter f fake

NL

that rescales

1%

0.1%

MS & Seljak 1710.09465

https://arxiv.org/abs/1710.09465
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• Nonlinear halo bias b2, bs2 

-> Hope for priors from theory, sims, and 3PCF/bispectrum 

• Modeling all power spectra to high Lmax 

Modi, White & Vlah (2017)

Challenges for σ8(z)
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CMB-S4 lensing X LSST clustering very promising for 
measuring primordial non-Gaussianity and growth of structure  

Get only slightly worse constraints for Simons Observatory  
What about DES instead of LSST? 

Joint analysis is crucial (factor 10 improvement) 

For fNL, need rather low Lmin and large fsky 

Growth measurement is limited by modeling small, nonlinear 
scales  
-> Part II of the talk

Conclusions: Part I
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Part II
Initial condition reconstruction
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BAO as a Standard Ruler

•This distance of 150 Mpc is very accurately computed 
from the anisotropies of the CMB. 
–0.4% calibration with current CMB.

Image Credit: E.M. Huff, the SDSS-III team, and the 
South Pole Telescope team.  Graphic by Zosia Rostomian

Acoustic scale is also imprinted in galaxies: BAO

36

Distance ⇠ 150Mpc

angle
⇠

Z z

0

dz0

H(z0)

Galaxies more likely separated by 150 rather than 140 or 160 Mpc

This measures Hubble parameter (=expansion rate)
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Preferred clustering at separation of 150Mpc

Anderson+ (2013) / Sloan Digital Sky Survey

BAO in SDSS-III BOSS galaxies 17

Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).

c� 2014 RAS, MNRAS 000, 2–39
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BAO scale is set in the early (linear) Universe
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TodayBig bang 
[-13.8bn yrs]

Decoupling 
[-13.7996bn yrs]

Hot sea of baryons & photons 

Driven by photon pressure

Electrons cool, 

form hydrogen, 

decouple from photons, 

& remain in place

Sound wave travels 150 Mpc:  
Baryon-acoustic-oscillation 
(BAO) scale



At early times, acoustic scale is the same everywhere

39
Padmanabhan++ (2012)

150 Mpc



Displacements on ~10-150 Mpc modulate this

40
Padmanabhan++ (2012)

150 Mpc



Reduce nonlinear dynamics with reconstruction

41
Padmanabhan++ (2012)

Estimate potentials and move galaxies back Eisenstein++ (2007)



For BOSS DR11 data, signal-to-noise of the distance scale 
improved by 50%, achieving sub-percent level precision 

Demonstration of reconstruction on real data

42Eisenstein++ (2007), Padmanabhan++ (2012), Anderson++ (2013)

BAO in SDSS-III BOSS galaxies 17

Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).

c� 2014 RAS, MNRAS 000, 2–39
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BAO in SDSS-III BOSS galaxies 17

Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).

c� 2014 RAS, MNRAS 000, 2–39
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Limiting factor: Structure formation is nonlinear
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… Fourier modes with wavenumber k

no with 

Nonlinear 
dynamics

BAO as a Standard Ruler

•This distance of 150 Mpc is very accurately computed 
from the anisotropies of the CMB. 
–0.4% calibration with current CMB.

Image Credit: E.M. Huff, the SDSS-III team, and the 
South Pole Telescope team.  Graphic by Zosia Rostomian

Broadband power spectrum 

Nonlinear dynamics affects 
nearby galaxies, so their data 
is thrown away

BAO distance 

Nonlinear dynamics smears 
out primordial BAO scale



Nonlinear dynamics: What can we do?
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(1) Better analytical models 

(2) Simulate it all and infer cosmology 

(3) Transform data to reduce nonlinear dynamics  

(4) Exploit non-Gaussian tails of galaxy distribution



Paradigm 2: Forward model & sample 
Sample ICs, evolve forward, compare vs observations, iterate

Jasche, Lavaux, 
Leclercq, Wandelt, 

Kitaura, HY Wang,…

Paradigm 3: Forward model & optimize  
Maximum-likelihood solution by solving optimization problem

Seljak, Aslanyan, 
Feng, Modi

Paradigm 1: Lagrangian reconstruction 
Estimate velocities, move galaxies back

Peebles, PIZA/MAK (e.g. Mohayaee), 
Eisenstein, Padmanabhan, Tassev, 

Zaldarriaga, Zhu, X. Wang, UL Pen+, 
B. Li+, Baldauf,  MS, …

45

Initial 
conditions

Observed 
galaxy 

distribution
Reconstruction

Nonlinear 
dynamics

Paradigm 4: ML to go directly to parameters Shirley Ho +



1-D example
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Initial

Final 



(1) Displacement field is a nonlinear functional  
of the linear initial density

47

Initial

Final 

 

 (k) =
k

k2
�0(k)

+

Z

k1

L(2)(k1,k� k1)�0(k1)�0(k� k1)

+ · · ·



(1) Displacement field is a nonlinear functional  
of the linear initial density

48

Initial

Final 

 

• Nonlinear terms are small, so displacement is quite linear 

• Perturbative modeling works well

e.g. Baldauf+ (2016)



(2) Shell crossing: Trajectories cross each other

49

• Strongly nonlinear & difficult to model 

• Seems like we cannot tell initial from final position 
(How many crossings happened?) 

• Expect to loose memory of initial conditions

Initial

Final 
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Initial

Final 

• Strongly nonlinear & difficult to model 

• Seems like we cannot tell initial from final position 
(How many crossings happened?) 

• Expect to loose memory of initial conditions

(2) Shell crossing: Trajectories cross each other
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•Estimate displacement as if there was no shell crossing 

•This displacement is pretty linear, so can estimate linear density as

Initial

Final 

�lin = r · �

�

Reconstruction without shell crossing



Algorithm 1: Isobaric/nonlinear reconstruction
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Each volume element has same mass 

Get 𝜒 by continuously distorting mesh until 𝛿=0 
using a moving mesh code

H.M. Zhu, Y. Yu, U.L. Pen, X. Chen & H.R. Yu (2017)  
Several more papers with X. Wang, Q. Pan & D. Inman (2017); also PIZA/MAK reconstruction

2

system ξ, where the mass per volume element is constant.
We define a coordinate transformation that is pure gra-
dient,

xi = ξµδiµ +
∂φ

∂ξν
δiν , (1)

where φ(ξ) is the displacement potential to be solved.
The new coordinate system is unique as long as we re-
quire the coordinate transformation defined above is pos-
itive definite, i.e., det(∂xi/∂ξα) > 0. We call this new
coordinate system potential isobaric gauge/coordinates.
It becomes analogous to “synchronous gauge” and “La-
grangian coordinates” before shell crossing, but allows a
unique mapping even after shell crossing. Since the Jaco-
bian of Eq. (1) is positive definite, we have ∂xa/∂ξa > 0
(no summation), from which it follows that each Eule-
rian coordinate is a monotonically increasing function of
its corresponding potential isobaric coordinate and vice
versa. This implies when we plot the Eulerian positions
of the potential isobaric coordinates, the curvilinear grid
lines will never overlap.
The unique displacement potential φ(ξ) consistent

with the nonlinear density and positive definite coordi-
nate transformation can be solved using the moving mesh
approach, which is originally introduced for the adaptive
particle-mesh N -body algorithm and the moving mesh
hydrodynamics algorithm [18, 19]. The moving mesh ap-
proach evolves the coordinate system towards a state of
constant mass per volume element, ρ(ξ)d3ξ = constant.
Since the shift from potential isobaric coordinates to Eu-
lerian coordinates can be large, the displacement poten-
tial must then be solved perturbatively. We solve for a
coordinate transformation ∆φ(i) at each step, where the
shift ∇∆φ(i) is a small quantity, and then calculate the
density field in the new coordinate frame. The positive
definiteness of the coordinate transformation is achieved
through smoothing and grid limiters [18, 19]. We need to
iterate this process for many times until the result con-
verges and obtain the nonlinear bijective mapping from
the Eulerian coordinate system to the potential isobaric
gauge, φ = ∆φ(1) + ∆φ(2) + ∆φ(3) + · · · , which results
from a continuous sequence of positive definite coordi-
nate transformations. The details of this calculation are
given in Appendix A.
We define the negative Laplacian of the reconstructed

displacement potential the reconstructed density field,

δr(ξ) ≡ −∇ξ ·∇ξφ(ξ) = −∇2
ξφ(ξ). (2)

Note that the reconstructed density field is computed
in the potential isobaric gauge instead of the Eulerian
coordinate system.

III. IMPLEMENTATION AND RESULTS

To test the performance of the reconstruction algo-
rithm, we run a N -body simulation with the CUBEP

3
M

code [20]. The simulation involves 20483 dark matter

FIG. 1. A slice of the nonlinear density field from the simu-
lation. The curvilinear grid shows the Eulerian coordinate of
each grid point of the potential isobaric coordinate.

particles in a box of length 600 Mpc/h per side. We
use the snapshot at z = 0 and generate the density field
on a 5123 grid. We solve for the displacement potential
from the nonlinear density field and then have the re-
constructed density field in the potential isobaric gauge.
The reconstruction code is mainly based on the CALDEFP
and RELAXING subroutines from the moving mesh hydro-
dynamics code [19]. The details of the numerical imple-
mentation are presented in Appendix A.
Figure 1 shows a slice of the nonlinear dark matter

density field. We also plot the Eulerian position of each
grid point of the potential isobaric gauge. The salient
feature is the regularity of the grid. Even in projection,
the grid never overlaps itself. This is guaranteed by ap-
propriate smoothing and grid limiters [19]. The distri-
bution of curvilinear grid points becomes denser in the
higher density regions and sparser in the lower density
regions; as a result the mass per curvilinear grid cell is
approximately constant.
To directly quantify the information of the initial con-

ditions in the density field, we calculate the propagator
of the density field,

C(k) = PδδL(k)/PδL(k), (3)

where δL is the linear density field scaled to z = 0 using
the linear growth function. The matter power spectrum
can be written as

Pδ(k) = C2(k)PδL(k) + PN (k), (4)

where C2(k)PδL(k) is the linear signal, which is the mem-
ory of the initial conditions, and PN (k) is the power gen-
erated in the nonlinear evolution, often referred as the



Algorithm 2: Iterative reconstruction
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Same idea, but get displacement by iteratively applying 
Zeldovich displacements 

Start with large smoothing scale to achieve coherence on 
large scales; then decrease smoothing scale iteratively

MS, Baldauf & Zaldarriaga (2017)
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system ξ, where the mass per volume element is constant.
We define a coordinate transformation that is pure gra-
dient,

xi = ξµδiµ +
∂φ

∂ξν
δiν , (1)

where φ(ξ) is the displacement potential to be solved.
The new coordinate system is unique as long as we re-
quire the coordinate transformation defined above is pos-
itive definite, i.e., det(∂xi/∂ξα) > 0. We call this new
coordinate system potential isobaric gauge/coordinates.
It becomes analogous to “synchronous gauge” and “La-
grangian coordinates” before shell crossing, but allows a
unique mapping even after shell crossing. Since the Jaco-
bian of Eq. (1) is positive definite, we have ∂xa/∂ξa > 0
(no summation), from which it follows that each Eule-
rian coordinate is a monotonically increasing function of
its corresponding potential isobaric coordinate and vice
versa. This implies when we plot the Eulerian positions
of the potential isobaric coordinates, the curvilinear grid
lines will never overlap.
The unique displacement potential φ(ξ) consistent

with the nonlinear density and positive definite coordi-
nate transformation can be solved using the moving mesh
approach, which is originally introduced for the adaptive
particle-mesh N -body algorithm and the moving mesh
hydrodynamics algorithm [18, 19]. The moving mesh ap-
proach evolves the coordinate system towards a state of
constant mass per volume element, ρ(ξ)d3ξ = constant.
Since the shift from potential isobaric coordinates to Eu-
lerian coordinates can be large, the displacement poten-
tial must then be solved perturbatively. We solve for a
coordinate transformation ∆φ(i) at each step, where the
shift ∇∆φ(i) is a small quantity, and then calculate the
density field in the new coordinate frame. The positive
definiteness of the coordinate transformation is achieved
through smoothing and grid limiters [18, 19]. We need to
iterate this process for many times until the result con-
verges and obtain the nonlinear bijective mapping from
the Eulerian coordinate system to the potential isobaric
gauge, φ = ∆φ(1) + ∆φ(2) + ∆φ(3) + · · · , which results
from a continuous sequence of positive definite coordi-
nate transformations. The details of this calculation are
given in Appendix A.
We define the negative Laplacian of the reconstructed

displacement potential the reconstructed density field,

δr(ξ) ≡ −∇ξ ·∇ξφ(ξ) = −∇2
ξφ(ξ). (2)

Note that the reconstructed density field is computed
in the potential isobaric gauge instead of the Eulerian
coordinate system.

III. IMPLEMENTATION AND RESULTS

To test the performance of the reconstruction algo-
rithm, we run a N -body simulation with the CUBEP

3
M

code [20]. The simulation involves 20483 dark matter

FIG. 1. A slice of the nonlinear density field from the simu-
lation. The curvilinear grid shows the Eulerian coordinate of
each grid point of the potential isobaric coordinate.

particles in a box of length 600 Mpc/h per side. We
use the snapshot at z = 0 and generate the density field
on a 5123 grid. We solve for the displacement potential
from the nonlinear density field and then have the re-
constructed density field in the potential isobaric gauge.
The reconstruction code is mainly based on the CALDEFP
and RELAXING subroutines from the moving mesh hydro-
dynamics code [19]. The details of the numerical imple-
mentation are presented in Appendix A.
Figure 1 shows a slice of the nonlinear dark matter

density field. We also plot the Eulerian position of each
grid point of the potential isobaric gauge. The salient
feature is the regularity of the grid. Even in projection,
the grid never overlaps itself. This is guaranteed by ap-
propriate smoothing and grid limiters [19]. The distri-
bution of curvilinear grid points becomes denser in the
higher density regions and sparser in the lower density
regions; as a result the mass per curvilinear grid cell is
approximately constant.
To directly quantify the information of the initial con-

ditions in the density field, we calculate the propagator
of the density field,

C(k) = PδδL(k)/PδL(k), (3)

where δL is the linear density field scaled to z = 0 using
the linear growth function. The matter power spectrum
can be written as

Pδ(k) = C2(k)PδL(k) + PN (k), (4)

where C2(k)PδL(k) is the linear signal, which is the mem-
ory of the initial conditions, and PN (k) is the power gen-
erated in the nonlinear evolution, often referred as the



Our reconstruction algorithm

54MS, Baldauf & Zaldarriaga (2017)

Move back 
along gradient 
(R=10 Mpc/h)

Move back 
along gradient 
(R=5 Mpc/h)

…

Measure total displacement 
Estimate linear density as 

�(q)

�̂lin = r · �(q)

Observed Uniform
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SECOND ORDER RECONSTRUCTION

2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  
1% subsample of 20483 DM particles in 500 Mpc/h per-side box

MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)



Correlation coefficient with initial conditions
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Perfect 
correl.

No correl.

Large scales Small scales

Observed 
nonlinear

MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6; also see Zhu+ (2017)



Correlation coefficient with initial conditions
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No correl.

Large scales Small scales

Standard  
reconstruction

Observed 
nonlinear

Perfect 
correl.

MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6; also see Zhu+ (2017)



Correlation coefficient with initial conditions
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No correl.

Large scales Small scales

New reconstruction

Standard  
reconstruction

Observed 
nonlinear

Perfect 
correl.

MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6; also see Zhu+ (2017)



Size of fractional mistake (relative to linear)
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19

FIG. 12. Power of the error of the reconstructed density relative to the linear density, represented by one minus the squared
correlation coe�cient with the linear initial conditions. In the grey shaded area, the reconstructed density is more than 95%
correlated with the linear density. Brighter colors represent a better displacement field � obtained by running more iteration
steps (1, 2, 4, 8, or 16). The curves are from our L = 500 h�1Mpc simulation at z = 0.

procedure based on the correct covariance. As a conse-
quence, our estimated BAO uncertainty is a conservative
estimate of the true uncertainty.

Appendix D: Results at redshift z = 0.6

Figures 13 and 14 show reconstruction results at red-
shift z = 0.6 as opposed to the redshift z = 0 that was
used in the main text. The densities before and after
reconstruction match the linear density better at this
higher redshift than at lower redshift, which is as ex-
pected because nonlinearities are smaller at higher red-
shift for any given scale.

Appendix E: Parameters and convergence tests

In this appendix we discuss some choices we made for
the reconstruction parameters, and some basic conver-
gence tests of our simulations.

1. Reconstruction parameters

Our reconstruction algorithm has several parameters
as described in Section IIIA 3. Table VI shows results
for di↵erent parameter choices. This demonstrates that
the final performance of the method is relatively insen-
sitive to the detailed parameter values. Some qualita-
tive choices are important though: It is important to
start with a relatively large smoothing scale, Rinit &
5 h�1Mpc, so that the smoothed overdensity is less
than unity for most grid points and the Zeldovich ap-
proximation is applicable. The smoothing scale should
also decrease from one iteration to the next, ✏

R

< 1,
to reconstruct progressively smaller scales in the itera-
tion. However, since reconstruction likely becomes in-

FIG. 13. Same as Fig. 4 but at redshift z = 0.6. The new re-
construction is more than 95% correlated with the initial con-
ditions at k  0.48 hMpc�1, or at k  0.53 hMpc�1 if second
order corrections are included in the method. For comparison,
the wavenumber where the correlation with initial conditions
drops below 95% is k = 0.21 hMpc�1 for standard reconstruc-
tion, and k = 0.09 hMpc�1 for the nonlinear density without
reconstruction in our setup.

e�cient on very small scales where shell crossing domi-
nates, we stop decreasing the smoothing scale at Rmin.
A reasonable choice may be Rmin ⇠ 1 h�1Mpc. We
work with Rmin = 1.01L/Ngrid throughout, which gives
Rmin = 0.99 h�1Mpc for our small-volume simulation
and Rmin = 2.7 h�1Mpc for our large-volume simula-
tions.
For the other parameters, we can use simple heuris-

tics. The number of iteration steps for the displacement
� can be determined by monitoring the final quantity
of interest and stopping the iteration once that quantity
stops changing significantly. Fig. 12 demonstrates that
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BAO signal
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certainly degrade the performance of reconstruction in
practical applications. We plan to study this in future
work.

As described in Section III, we use the eight-step dis-
placement �(8) for our new reconstruction, but the one-
step displacement �

(1) for the standard reconstruction,
because this is what has been used in the literature so
far. Fig. 12 in Appendix D explores how the performance
depends on the number of steps used to construct the dis-
placement field �. We see only little benefit in using more
than eight iteration steps, indicating that the algorithm
has converged after eight steps. Extending the standard
reconstruction by applying it to the eight-step displace-
ment �(8) improves over using �

(1) on most scales, but it
still performs worse than our second-order reconstruction
(see Appendix B for discussion).

For the correlation coe�cient shown in Fig. 4, the first
order reconstruction does not depend on transfer func-
tions because any rescaling by a function of k would not
a↵ect the correlation coe�cient. In contrast, the second
order correction does require transfer functions that were
calibrated to simulations as described in Appendix A.
Just as in the case of forward modeling in [11], the shape
of the transfer functions can probably be understood us-
ing the EFT approach, but we leave this for future work.

C. Baryonic acoustic oscillations

FIG. 5. Fractional BAO signal in the power spectrum, given
by the fractional di↵erence of simulations initialized with and
without BAO wiggles, h(P̂wiggle � P̂nowiggle)i/hP̂nowigglei. Re-
construction sharpens the BAO wiggles so that they agree
with those in the linear initial conditions. The power spectra
are averaged over ten large-volume simulations at z = 0, using
the same random seed for each wiggle and nowiggle simulation
to cancel most of the cosmic variance [56, 63, 67, 68].

Measurements of the BAO scale from the galaxy power
spectrum are a prime example for the application of
reconstruction, because it reverses or avoids large-scale
shifts that would otherwise wash out the BAO wiggles

Mean BAO scale

Field vs lin. theory vs lin. realization

Initial conds. +0.05Mpc [+0.03%] +0.00Mpc [±0.00%]

Final conds. +0.49Mpc [+0.33%] +0.44Mpc [+0.30%]

Standard rec +0.02Mpc [+0.01%] �0.03Mpc [�0.02%]

New O(1) rec +0.05Mpc [+0.03%] ±0.00Mpc [±0.00%]

New O(2) rec +0.06Mpc [+0.04%] +0.02Mpc [+0.01%]

TABLE II. Systematic bias of the BAO scale estimated from
the best-fit BAO scale from the power spectrum of ten large-
volume simulations at z = 0. The BAO scale from the nonlin-
ear density is biased high by 0.3%. Reconstruction eliminates
that bias [36, 37, 53, 75–78]. The residual biases after re-
construction are small and likely consistent with zero because
the estimates are derived from only ten simulations. The left
column shows the sample mean of the best-fit BAO scale rela-
tive to the fiducial theoretical value, hr̂BAOi� rfidBAO; the right
column is relative to the initial condition of each simulation,
hr̂BAO � r̂linBAOi, canceling cosmic variance.

in the observed galaxy power spectrum, degrading the
measurement [17, 36, 65]. As mentioned above, the stan-
dard reconstruction technique has been successfully ap-
plied to several redshift surveys, improving the precision
of the measured BAO scale typically by a factor of ⇠ 2
[38–44], with similar improvements expected for future
surveys. It is therefore exciting to see if our method can
improve BAO measurements further. To answer this, we
use ten large-volume simulations with L = 1380 h�1Mpc
that were produced by Ding et al. [67] as described in
Section III C above.
Fig. 5 shows the fractional BAO signal in the simula-

tions. Our method restores the BAO signal of the linear
density perfectly, reversing the nonlinear damping. This
is not surprising given that the BAO signal is only vis-
ible at k < 0.5 hMpc�1, where the reconstructed den-
sity is more than 90% correlated with the linear density
as we already found in Fig. 4. Standard reconstruction
(green line in Fig. 5) also reduces the nonlinear damp-
ing, but it does not recover the full linear BAO wiggles
at k & 0.2 hMpc�1.
To see if the signal-to-noise ratio of the BAO scale es-

timated from the power spectrum is also improved by
reconstruction, we need to characterize the noise of the
estimated BAO scale. This would be straightforward if
we knew the covariance between power spectrum bins
after reconstruction, but that is di�cult to compute re-
liably. We therefore choose a simpler Monte Carlo ap-
proach and estimate the BAO uncertainty from the scat-
ter of the best-fit BAO scale among the ten simulations.
This provides a conservative estimate for the uncertainty
of the best-fit BAO scale (see Appendix C, where we also
describe our fitting procedure).
Fig. 6 compares the best-fit BAO scales estimated

from linear initial conditions, nonlinear late-time den-
sity, and reconstructed density in each of the ten simu-
lations, by fitting the BAO scale to the power spectrum

MS, Baldauf, Zaldarriaga (2017); also see Wang, Yu, Zhu, Yu, Pan & Pen (2017)
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FIG. 6. Fractional bias of the best-fit BAO scale relative to the fiducial BAO scale in ten 2.6h�3Gpc3 simulations at z = 0.
In each simulation, the BAO scale is estimated by fitting a model to the measured power spectrum at k  0.6 hMpc�1 as
described in Appendix C. The lower subpanels show histograms of the best-fit BAO scale (grey), and corresponding Gaussian
pdfs (solid black) based on sample mean and sample standard deviation of the best-fit BAO scale. The realizations are sorted
according to their initial linear BAO scale.

FIG. 7. Fractional BAO error bar as a function of maximum
wavenumber used for fitting the BAO scale. The error bar
is a Monte Carlo estimate obtained from ten simulations at
z = 0 with V = 2.6h�3Gpc3 each: We fit the BAO scale to
the ratio of wiggle and nowiggle power spectra in each of the
ten simulations, and then compute the scatter of the best-
fit BAO scale across the ten simulations. The iterative O(2)
reconstruction matches the linear initial conditions perfectly.

at k  kmax = 0.6 hMpc�1. This shows that our recon-
struction recovers the linear BAO scale with high preci-
sion and on a realization-by-realization basis.

To estimate if the estimated BAO scale is systemati-
cally biased relative to the true BAO scale, we compute
the expectation value of the best-fit BAO scale; see Ta-
ble II. Within the uncertainty of our ten simulations, we
do not find evidence for any systematic BAO bias after
any of the reconstruction methods that we tested. The
reconstructions thus eliminate the systematic nonlinear
BAO bias of⇠ 0.3% at z = 0 that is generated by shifts of
particles that were separated by the pristine BAO scale in

Rms scatter of BAO scale

Field vs lin. theory vs lin. realization

Initial conds. 0.35Mpc [0.24%] 0Mpc [0%]

Final conds. 0.99Mpc [0.66%] 1.20Mpc [0.81%]

Standard rec 0.63Mpc [0.42%] 0.55Mpc [0.37%]

New O(1) rec 0.44Mpc [0.29%] 0.13Mpc [0.08%]

New O(2) rec 0.37Mpc [0.25%] 0.08Mpc [0.05%]

TABLE III. Left column: Root-mean-square scatter of the
best-fit BAO scale between ten 2.6h�3Gpc3 simulations at
z = 0. This is a Monte Carlo estimate for the expected sta-
tistical 1� uncertainty when measuring the BAO scale from
the power spectrum in a single 2.6h�3Gpc3 volume. Right

column: Rms scatter of the BAO scale relative to that in the
initial conditions of each simulation, r̂BAO � r̂linBAO, which is
sourced by nonlinear shift terms as discussed in Section IVD.
All numbers are somewhat uncertain because they were esti-
mated from the scatter of only ten simulations.

the initial conditions [17, 65], and that would be present
when measuring the BAO scale from the nonlinear power
spectrum without reconstruction. This is consistent with
previous findings [36, 37, 53, 75–78].
To estimate the statistical 1� uncertainty correspond-

ing to measuring the BAO scale from the power spectrum
in a 2.6h�3Gpc3 volume, we compute the root-mean-
square (rms) scatter of the best-fit BAO scale between
the ten simulations; see Table III and Fig. 7.
The uncertainty of the BAO scale from the nonlinear

power spectrum is increased by a factor of 2.8 at z = 0
and by a factor of 2.6 at z = 0.6 relative to the uncer-
tainty from the linear power spectrum. This is again
caused by shifts of particles that were separated by the
BAO scale in the early universe. By reducing those shifts,
standard reconstruction [17] reduces the statistical BAO
uncertainty by a factor of 1.6 at z = 0 and by a factor
of 1.9 at z = 0.6 relative to performing no reconstruc-

MS, Baldauf, Zaldarriaga (2017); also see Wang, Yu, Zhu, Yu, Pan & Pen (2017)
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FIG. 6. Fractional bias of the best-fit BAO scale relative to the fiducial BAO scale in ten 2.6h�3Gpc3 simulations at z = 0.
In each simulation, the BAO scale is estimated by fitting a model to the measured power spectrum at k  0.6 hMpc�1 as
described in Appendix C. The lower subpanels show histograms of the best-fit BAO scale (grey), and corresponding Gaussian
pdfs (solid black) based on sample mean and sample standard deviation of the best-fit BAO scale. The realizations are sorted
according to their initial linear BAO scale.

FIG. 7. Fractional BAO error bar as a function of maximum
wavenumber used for fitting the BAO scale. The error bar
is a Monte Carlo estimate obtained from ten simulations at
z = 0 with V = 2.6h�3Gpc3 each: We fit the BAO scale to
the ratio of wiggle and nowiggle power spectra in each of the
ten simulations, and then compute the scatter of the best-
fit BAO scale across the ten simulations. The iterative O(2)
reconstruction matches the linear initial conditions perfectly.

at k  kmax = 0.6 hMpc�1. This shows that our recon-
struction recovers the linear BAO scale with high preci-
sion and on a realization-by-realization basis.

To estimate if the estimated BAO scale is systemati-
cally biased relative to the true BAO scale, we compute
the expectation value of the best-fit BAO scale; see Ta-
ble II. Within the uncertainty of our ten simulations, we
do not find evidence for any systematic BAO bias after
any of the reconstruction methods that we tested. The
reconstructions thus eliminate the systematic nonlinear
BAO bias of⇠ 0.3% at z = 0 that is generated by shifts of
particles that were separated by the pristine BAO scale in

Rms scatter of BAO scale

Field vs lin. theory vs lin. realization

Initial conds. 0.35Mpc [0.24%] 0Mpc [0%]

Final conds. 0.99Mpc [0.66%] 1.20Mpc [0.81%]

Standard rec 0.63Mpc [0.42%] 0.55Mpc [0.37%]

New O(1) rec 0.44Mpc [0.29%] 0.13Mpc [0.08%]

New O(2) rec 0.37Mpc [0.25%] 0.08Mpc [0.05%]

TABLE III. Left column: Root-mean-square scatter of the
best-fit BAO scale between ten 2.6h�3Gpc3 simulations at
z = 0. This is a Monte Carlo estimate for the expected sta-
tistical 1� uncertainty when measuring the BAO scale from
the power spectrum in a single 2.6h�3Gpc3 volume. Right

column: Rms scatter of the BAO scale relative to that in the
initial conditions of each simulation, r̂BAO � r̂linBAO, which is
sourced by nonlinear shift terms as discussed in Section IVD.
All numbers are somewhat uncertain because they were esti-
mated from the scatter of only ten simulations.

the initial conditions [17, 65], and that would be present
when measuring the BAO scale from the nonlinear power
spectrum without reconstruction. This is consistent with
previous findings [36, 37, 53, 75–78].
To estimate the statistical 1� uncertainty correspond-

ing to measuring the BAO scale from the power spectrum
in a 2.6h�3Gpc3 volume, we compute the root-mean-
square (rms) scatter of the best-fit BAO scale between
the ten simulations; see Table III and Fig. 7.
The uncertainty of the BAO scale from the nonlinear

power spectrum is increased by a factor of 2.8 at z = 0
and by a factor of 2.6 at z = 0.6 relative to the uncer-
tainty from the linear power spectrum. This is again
caused by shifts of particles that were separated by the
BAO scale in the early universe. By reducing those shifts,
standard reconstruction [17] reduces the statistical BAO
uncertainty by a factor of 1.6 at z = 0 and by a factor
of 1.9 at z = 0.6 relative to performing no reconstruc-

MS, Baldauf, Zaldarriaga (2017); also see Wang, Yu, Zhu, Yu, Pan & Pen (2017)
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FIG. 8. Same as Fig. 6, but for each simulation we estimate the BAO scale in the linear initial conditions and subtract it
o↵. This cancels the cosmic variance caused by linear finite-volume fluctuations of the initial conditions, allowing for a more
accurate comparison of methods. The remaining scatter between simulations corresponds to the BAO uncertainty caused by
nonlinear shift terms (see text for discussion). Our reconstruction reduces this substantially and recovers the linear BAO scale
in each individual simulation with high precision.

FIG. 9. Nonlinear BAO noise contribution �NL sourced by
nonlinear shift terms that wash out the acoustic peak. The
plot shows an estimate of this nonlinear noise divided by the
BAO signal, as a function of the maximum wavenumber used
to fit for the BAO scale in the power spectrum. To cancel
the linear noise contribution, the linear BAO scale of each
simulation is substracted from the measured late-time BAO
scale as in Fig. 8; the rms scatter of that di↵erence between
simulations is given by nonlinear terms that are not present
in the initial conditions. By construction, the linear density
has zero nonlinear noise and is therefore not shown. Recon-
struction reduces the nonlinear noise due to nonlinear shifts
significantly. See Section IVD for discussion.

our reconstruction method recovers the full broadband
power spectrum of the initial conditions. This is shown in
Fig. 10, where the measured power spectrum after recon-
struction is divided by the linear initial power spectrum
linearly scaled to the redshift z = 0 of the simulation.

The original nonlinear power spectrum agrees with the
linear power spectrum within 5% at k  0.11 hMpc�1

FIG. 10. Power spectra in our L = 500 h�1Mpc simulation
at z = 0, divided by the linear initial power spectrum linearly
scaled to z = 0. Compared to the nonlinear density without
reconstruction (thick solid line), reconstruction significantly
improves the agreement with the linear power spectrum on
intermediate scales. Our first-order reconstruction, r · �,
has no transfer functions, while the second-order method uses
transfer functions discussed in Appendix A. The spectra are
raw spectra without mitigating CIC kernel or shot noise, both
of which matter at k & 1 hMpc�1. The high-k upturn of the
first-order reconstruction happens because our initial density
has zero shot noise but the late-time density has a small shot
noise, n̄�1 = 1.47h�3Mpc3. This can be avoided by multi-
plying with t̄1(k) given in Eq. (A6), which acts like a Wiener
filter (thin solid line).

in our simulations at redshift z = 0. Our first-order
reconstruction without transfer functions improves this
slightly, so that reconstructed and linear power agree
within 5% at k  0.16 hMpc�1. The second-order
method gives a larger improvement, agreeing with the
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Add realism: 
• Shot noise 
• Halo/galaxy bias (doing right now) 
• Redshift space distortions 
• Survey mask & depth variation (inhomogeneous noise) 
• What happens to primordial fNL after reconstruction?
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4 halo mass bins at z=0.6

~SPHEREx

BOSS CMASS
~DESI

Weigh by halo mass 
5 MP-Gadget sims with 15363 particles, L=500Mpc/h, FOF halos
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FIG. 3. Broadband shape of reconstructed power spectrum.
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FIG. 3. Broadband shape of reconstructed power spectrum.
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FIG. 3. Broadband shape of reconstructed power spectrum.



77

3

FIG. 3. Broadband shape of reconstructed power spectrum.
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FIG. 3. Broadband shape of reconstructed power spectrum.
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Nonlinear physics limits science return of galaxy surveys 

Reconstruction can reduce that degradation 

At z=0, reconstruction achieves >95% correlation with linear 
density at k<0.35 hMpc-1 

Improve BAO signal-to-noise by factor 2.7 (z=0) to 2.5 (z=0.6) 

70%-30% improvement over standard BAO reconstruction 

Can improve LSS survey science (dark energy, Hubble 
constant, early universe physics) 

Lots of work to be done to apply it to real data 

Conclusions: Part II
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Model catastrophic outliers as

Catastrophic redshift errors

MS & Seljak 1710.09465
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FIG. 25. Neutrino mass precision marginalized over mfake

⌫

but not over galaxy bias. In that case the precision is much
better. Notice the di↵erent scale of the vertical axis.

ter power spectrum do therefore not limit the neutrino
forecast.

In contrast, Fig. 25 shows that if we do not marginal-
ize over galaxy bias, the neutrino mass precision improves
by a factor of 10, reaching �(m⌫) = 10meV in the best
case. This shows that galaxy bias is the key limita-
tion for the neutrino forecasts. Improved bias measure-
ments or modeling could thus lead to interesting neutrino
constraints from the scale-depedent bias e↵ect. 2-point
cross-correlations between CMB lensing and galaxy clus-
tering alone are not able to provide such accurate bias
measurements even if we only assume linear bias (oth-
erwise this would have shown up in forecasts marginal-
izing over galaxy bias in Fig. 24). But measurements
of higher-order N-point functions or redshift space dis-
tortions should be able to determine galaxy bias more
accurately. This could push the neutrino mass preci-
sion closer to the case without marginalizing over galaxy
bias, although this requires more detailed studies that in-
clude statistics beyond the power spectrum and nonlinear
galaxy bias.

In conclusion, measuring the sum of neutrino masses
using scale-dependent bias between lensing and cluster-
ing alone is likely not competitive with other meth-
ods. This is consistent with similar findings for corre-
lating galaxy weak lensing shear and galaxy clustering
[11]. Nevertheless, if neutrino mass is su�ciently large
to be detectable using this scale-dependent bias e↵ect,
it may serve as a useful cross-check that would be in-
dependent from other cosmological neutrino mass mea-
surements and independent of ⌧ . Future improvements
may be possible if bias parameters can be measured bet-
ter, e.g. using redshift space distortions and higher-order
N-point functions, or if we can improve models for the
measured power spectra involving fewer bias parameters
while reaching smaller scales.

VIII. REDSHIFT ERRORS

A. Types of errors

The above forecasts ignored redshift errors through-
out. This is an important caveat because dense imaging
surveys rely on photometric redshifts that are subject to
two types of redshift errors.
First, there are non-catastrophic errors that smear out

the true redshifts. They can be described by adding to
the true redshifts Gaussian random noise, with a typical
rms of dz/(1 + z) ⇠ 0.05 for LSST. This error is smaller
than our broad tomographic redshift bins which satisfy
�z/(1 + z) > 0.2 in all cases. We therefore continue to
ignore these errors.
Second, there are catastrophic redshift errors, where

galaxies are attributed to completely wrong redshifts.
This can severely bias angular power spectra. For ex-
ample, if low-redshift galaxies (say z = 0.1) are wrongly
attributed to high-redshift tomographic bins (say z =
3 � 4), this adds spurious power to high-redshift tomo-
graphic bins. This can then be confused with an f

NL

sig-
nal or high �

8

at high redshift. Projection e↵ects make
this systematic error scale-dependent. It may be possi-
ble to identify and remove some of the catastrophic out-
liers by comparing with spectroscopic surveys like DESI,
which would reduce the catastrophic error rate, but pre-
sumably not perfectly.

B. A simple model for catastrophic redshift errors

Due to their complicated nature a fully realistic treat-
ment of catastrophic redshift errors would be beyond the
scope of this paper. To still get a sense of their impact,
we introduce an idealized but simple analytical model:
We reshu✏e galaxy redshifts such that some fraction of
galaxies is assigned to the correct tomographic redshift
bin, while the remaining galaxies are outliers that are as-
signed to other redshift bins. Each tomographic redshift
bin will then consist of galaxies with correctly assigned
redshifts and outlier galaxies whose true redshift is out-
side the redshift bin.
To compute the overdensity �g(✓) of the ith observed

tomographic redshift bin, we therefore integrate over the
modified number density

dn

dz

����
i,obs

(z) =

(
(1� f i

out

) dn
dz (z) if z 2 ith bin,

ni
n
tot

�ni
f i
out

dn
dz (z) else,

(23)

where the first line comes from galaxies with correct red-
shifts and the second line is due to outliers. We intro-
duced the outlier fraction f i

out

as the probability that
a galaxy assigned to the ith tomographic redshift bin
(e.g., z = 3�4) actually resides at a redshift outside that
bin (e.g., z = 0.1). dn

dz (z) is the fiducial angular number
density of the survey, i.e. our best estimate of the true

22

redshift distribution that would be obtained if the survey
had no redshift errors; ni ⌘

R
z2bin i dz

dn
dz (z) is the num-

ber of objects per steradian in the ith tomographic bin if
there were no outliers; and n

tot

⌘ R
dz dn

dz (z) is the total
number of observed objects per steradian if we integrate
over all redshifts where dn

dz (z) is nonzero (0  z  7 in
our case). The normalization in Eq. (23) ensures that
the total number of galaxies per tomographic bin is con-
served when changing the outlier fraction f i

out

.
The angular cross-power spectra between CMB lensing

and observed galaxy redshift bins are then

Cg
` = (1� f

out

)Cc
` + f

out

Co
` , (24)

where Cc is due to galaxies assigned to the correct to-
mographic redshift bin and Co is due to redshift out-
liers. Similarly, the auto-power spectra of clustering in
observed redshift bins are

Cgg
` = (1� f

out

)2Ccc

` + 2(1� f
out

)f
out

Cco

` + f2

out

Coo

` ,
(25)

which have contributions from the auto-correlation Ccc

of correctly assigned redshifts, from the cross-correlation
Cco between correct and outlier redshifts, which is only
nonzero if beyond-Limber corrections are included, and
from the auto-correlation Coo of outliers.6

To study the impact of redshift outliers on forecasts,
we will marginalize over the outlier rate. The fractional
response of Cg to a fractional change in the outlier rate
is

f
out

Cg
`

@Cg
`

@f
out

= �⌘
Cc

` � Co
`

Cc
` + ⌘Co

`

, (26)

where

⌘ ⌘ f
out

1� f
out

(27)

is small for small outlier fractions. The response (26) is
shown in Fig. 26. A 10% (100%) change in the outlier
rate changes Cg by at most 6% (60%). The fractional
response is largest at ` . 100 and for high-redshift bins,
because low-redshift galaxies with large clustering power

6 A similar expression holds for the cross-correlation between two
di↵erent redshift bins if beyond-Limber corrections are included.
Also notice that the C` on the right hand side of (24) and (25)
are independent of the fiducial value of f

out

and are determined
by the fiducial global number density dn/dz of the survey. To
compute the shot noise of auto-power spectra with Eq. (A16)
we integrate over Eq. (23). Since outliers are just re-distributed
between redshift bins and each galaxy still contributes only to a
single redshift bin, cross-spectra between di↵erent redshift bins
still have no shot noise. If the fiducial f

out

is nonzero, each fidu-
cial angular g and gg power spectrum depends on galaxy bias
amplitudes Bi at all redshifts, which we will include in forecasts,
but the dependence on bias parameters outside the nominal red-
shift bin is suppressed for small outlier fractions.

FIG. 26. Fractional response (26) of CMB-lensing galaxy-
clustering cross-spectra Cg to a fractional change in the red-
shift outlier rate f

out

. At low ` and for the lowest redshift bin,
the contribution from correct redshifts Cc dominates over
the contribution Co from outliers so that the response (26)
becomes �⌘ = �0.11. For tomographic bins at higher red-
shift, the outlier term Co dominates over the correct-redshift
term Cc, and low-z galaxies that are incorrectly assigned to
high-z bins contaminate the high-z bins. This leads to a large
low-` response of high-redshift bins to the outlier fraction. At
` & 100 the response (26) vanishes because Cc ⇡ Co.

are wrongly assigned to high-redshift tomographic bins
where the true clustering power is small.
The fractional response of galaxy auto-power spectra

to a fractional change in the outlier rate is

f
out

Cgg
`

@Cgg
`

@f
out

= �2⌘
Ccc

` � (1� ⌘)Cco

` � ⌘Coo

`

Ccc + 2⌘Cco + ⌘2Coo

⇡ �2⌘,

(28)

where the approximation in the last step is valid for small
fiducial outlier fractions, f

out

. 0.1, because in that case
⌘ . 0.1 and Cco ⌧ Ccc. Fig. 27 shows the response (28).
Indeed, it is close to �2⌘ for all ` and redshift bins.
Thus, g spectra respond to the outlier rate on large

scales ` . 100 but not on smaller scales, whereas the
response of gg spectra is approximately independent of
scale and redshift. The outlier rate can therefore be de-
termined by measuring both g and gg spectra, as we
discuss next.

C. Impact on forecasts

We perform a Fisher analysis that includes one outlier
rate parameter f i

out

for each of our six tomographic red-
shift bins, assuming a fiducial outlier rate of f i

out

= 0.1
without any priors. We marginalize over one linear bias
parameter per redshift bin, f

NL

, and f fake

NL

, and use all
power spectra of CMB-S4 lensing and LSST clustering
up to `

max

= 500 (including beyond-Limber corrections
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