COSMOLOGY WITH THE SKA

Roy Maartens

UNIVERSITY of the WESTERN CAPE

3 March 2016

XA

HUGE GALAXY SURVEYS – THE NEXT FRONTIER

State-of-the-art galaxy surveys today (BOSS, DES)

BOSS sky coverage

The next generation of surveys – SKA, Euclid, LSST, ... – will deliver much greater volume and thus precision.

SKA Phase 1 Before rebaselining

2 sites (South Africa, Australia); 3 telescopes; one Observatory Frequency range SKA1: 50 MHz – 3 GHz

Cost-cap: €650M Construction: 2017 – 2023 Early science: 2020 Phase 2 SKA: 2023 - 2030

SKA Phase 1 After rebaselining

2 sites (South Africa, Australia); 3 telescopes; one Observatory Frequency range SKA1: 50 MHz – 3 GHz

Cost-cap: €650M Construction: 2017 – 2023 Early science: 2020 Phase 2 SKA: 2023 - 2030

SKA-Survey: ~ 60 15m dishes + ASKAP, AUS **0 – deferred**

Exploring the Universe with the world's largest radio telescope

2 of the 64 MeerKAT dishes

COSMOLOGICAL SURVEYS IN THE RADIO

HI GALAXY REDSHIFT SURVEY

- Neutral Hydrogen emits 21cm/ 1420 MHz in restframe
- Individual HI galaxies detected, very accurate redshifts
- The radio analogue of an optical spectroscopic survey
- No foregrounds, no stellar contamination
- But this needs very high sensitivity

COSMOLOGICAL SURVEYS IN THE RADIO

HI INTENSITY MAPPING SURVEY

- Individual HI galaxies not detected, only integrated HI emission
- Perfectly good for large-scale cosmology (BAO, RSD, PNG)
- Very narrow redshift bins possible
- Like the CMB but at many redshifts
- Mainly via single-dish auto-correlations
- Major problem of foreground removal (worsens as *z* increases)
- Also used in Epoch of Reionization experiments

COSMOLOGICAL SURVEYS IN THE RADIO

RADIO CONTINUUM SURVEY

- Total radio emission from galaxies (mainly synchrotron)
- No redshift information but can get some, using HI or optical data
- Many galaxies at high redshift

SOME OF THE BIG QUESTIONS

• Is Dark Energy not the vacuum energy Λ – but a dynamical field?

$$w \equiv \frac{p_{\rm de}}{\rho_{\rm de}} = w_0 + (1-a)w_a$$

- Is there no DE? Is acceleration driven by modified gravity?
 i.e. does GR fail on the largest cosmological scales?
- Is the primordial spectrum of perturbations non-Gaussian? What does it tell us about Inflation?
- Is the large-scale structure of matter isotropic like the CMB?

Probes that we use to answer these questions:

BAO + redshift space distortions + angular power spectra

BAO – a fossil record in the galaxy distribution

galaxy formation

z < 30

decoupling

z=1100

BAO – a powerful probe of H(z) and $D_A(z)$

$$\frac{r_s}{1+z} = D_A(z)\Delta\theta(z) \qquad r_s \approx 100h^{-1} \text{ Mpc}$$
$$\frac{r_s}{1+z} = \frac{\Delta z}{(1+z)H(z)}$$

Measure $\Delta \theta(z)$ and Δz Deduce $D_A(z)$ and H(z)

Galaxy map 3.8 billion years ago Galaxy map 5.5 billion years ago CMB 13.7 billion years ago

Redshift space distortions

The average motion of galaxies relative to us is given by the Hubble expansion.

Over-dense regions (eg galaxy clusters) and under-dense regions (eg voids) induce additional peculiar velocities relative to the Hubble flow.

The Kaiser formula

$$\delta_{g\,\rm obs} = (b + f\mu^2)\delta_m$$

where

$$\mu = \mathbf{n} \cdot \mathbf{\hat{k}} = \frac{k_{\parallel}}{k} = \cos \alpha$$

$$f = \frac{d\ln\delta_m}{d\ln a}$$

leading to the power spectrum:

$$P_{g \text{ obs}}(\eta, k, \mu) = (b + f\mu^2)^2 P_m(\eta, k)$$

Measuring the monopole and quadrupole allow us to separately extract b and f (up to a normalization of the power spectrum).

The growth rate f is a good diagnostic of deviations from LCDM and also from GR.

Parametrization:

$$f(\eta, \mathbf{k}) = \left[\Omega_m(\eta)\right]^{\gamma(\eta, \mathbf{k})}$$

In LCDM, and dynamical DE where the clustering of DE is negligible, $\gamma \approx 0.55$

A significant deviation from this value could indicate a breakdown of GR

SKA COSMOLOGICAL SURVEYS

HI GALAXY REDSHIFT SURVEY

- SKA1 10 million galaxies, 5000 deg², z<0.6
- SKA2 1 billion galaxies, 30000 deg², z<2

SKA1 will not be a game-changer but will provide excellent complement to optical surveys

SKA2 will be a game-changer

(Yahya et al 2015)

SKA COSMOLOGICAL SURVEYS

HI INTENSITY MAPPING SURVEY SKA1 – 30000 deg² , z<3

Wide area and deep redshift – can measure very large scales with game-changing precision.

Error over signal on P(k) at k~0.01/Mpc – beyond turnover scale

(Bull et al 2015)

Huge volume of SKA1 intensity mapping

Volume of different surveys

(Maartens et al 2014)

Redshift reach of spectroscopic SKA and optical/IR

SKA COSMOLOGICAL SURVEYS

CONTINUUM SURVEY

- SKA1 100 million galaxies, 30000 deg²
- SKA2 2 billion galaxies, 30000 deg²

Consistency between galaxies & CMB

In standard cosmology, the dipole of the matter distribution should agree with the dipole of the CMB.

NVSS all-sky radio survey shows consistency in direction (within very large error bars) but not amplitude.

SKA angular correlation function (100's millions galaxies) will be able to detect dipole within $\sim 5^{\circ}$ (Phase 1) and $\sim 1^{\circ}$ (Phase 2).

BAO precision – radial

BAO precision – transverse

Probing Dark Energy using RSD

Testing General Relativity using RSD

Bull 2015

Observed galaxy counts on the largest scales

We count the number of galaxies per pixel:

Angular position \mathbf{n} Redshift z $N\left(\mathbf{n},z
ight)d\Omega_{\mathbf{n}}dz$

How do we describe the count fluctuations theoretically?

We need the correct bias definition (in synchronous gauge) plus RSD:

$$\delta_{\rm obs} = b\Delta_m - \frac{1}{\mathcal{H}}\partial_{\chi}(\mathbf{n}\cdot\mathbf{v}_m)$$

There are additional terms from redshift perturbations and volume perturbations. Start with lensing:

Distant galaxies are magnified by intervening matter. The number density of lensed galaxies is related to the unlensed number density by $\bar{n}_g = \bar{n}_g \sim \bar{n}_g (1 - 2\kappa)$

$$n_g = -\frac{g}{\mu} \approx \bar{n}_g (1 - 2\kappa)$$

where we neglect magnification bias and the lensing convergence is

$$\kappa = -rac{1}{2}
abla_{m{n}}^2 \int_{\eta_{
m o}}^{\eta} d ilde{\eta} \ rac{(ilde{\eta}-\eta)}{(\eta_{
m o}-\eta)(\eta_{
m o}- ilde{\eta})} (\Phi+\Psi).$$

This leads to a lensing contribution to the number counts: $\delta_{\rm obs} = b\Delta_m - \frac{1}{\mathcal{H}}\partial_{\chi}(\mathbf{n}\cdot\mathbf{v}_m) - 2\kappa$

- RSD allow us to effectively measure peculiar velocities
- Lensing convergence allows us to effectively measure the lensing potential from number counts (Alonso et al 2015, Montanari & Durrer 2015)

This offers a possible new way to measure the lensing potential – without the need to measure shapes or sizes or magnitudes of galaxies. What other contributions are there to $\delta_{
m obs}$?

Gravitational redshift?

Thinking of the CMB – what about Sachs-Wolfe and ISW effects? And time-delay?

These (and some other terms) are all present – but they are only non-negligible on horizon scales.

We need to consider the full perturbed lightray equation, including the perturbation of the direction vector.

$$(\delta\theta, \,\delta\varphi) = (\theta_s - \theta_o, \,\varphi_s - \varphi_o)$$
$$\frac{\delta z}{1 + \overline{z}} = \mathbf{n} \cdot \mathbf{v} - \Phi - \int^{\eta_o} d\eta (\Phi' + \Psi')$$

These effects have been computed:

Yoo, Fitzpatrick, Zaldarriaga 2009; Yoo 2010; Bonvin, Durrer 2011; Challinor, Lewis 2011 Notation change:

$$\delta_{\rm obs} \to \Delta, \quad \Delta_m \to D, \quad \chi \to r,$$

$$density \quad redshift-space distortion$$

$$\Delta(z, \mathbf{n}) = b \cdot D - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$

$$- \int_0^r dr' \frac{r - r'}{rr'} \Delta_\Omega (\Phi + \Psi) \quad \text{lensing}$$

$$- \int_0^r dr' \frac{r - r'}{rr'} \Delta_\Omega (\Phi + \Psi) \quad \text{lensing}$$

$$- \int_0^r dr' \frac{r - r'}{rr'} \Delta_\Omega (\Phi + \Psi) \quad \text{redshift}$$

$$+ \left(1 - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} - \frac{2}{r\mathcal{H}}\right) \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_r \Psi$$

$$+ \Psi - 2\Phi + \frac{1}{\mathcal{H}} \dot{\Phi} - 3\frac{\mathcal{H}}{k} V + \frac{2}{r} \int_0^r dr' (\Phi + \Psi)$$

$$+ \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2}{r\mathcal{H}}\right) \left[\Psi + \int_0^r dr' (\dot{\Phi} + \dot{\Psi})\right] \quad \Rightarrow \text{ potential}$$

$$ds^2 = -a^2 \left[(1 + 2\Psi) d\eta^2 + (1 - 2\Phi) \delta_{ij} dx^i dx^j \right]$$

standard expression

New information in the observed overdensity. Relativistic terms grow on very large scales – but there is cosmic variance

Primordial non-Gaussianity in the galaxy distribution

- Primordial quantum fluctuations generated during Inflation – may be non-Gaussian.
- Primordial non-Gaussianity is 'frozen' on large scales during the expansion of the Universe.
- The effect of PNG of local type is to modify the bias of galaxies relative to the underlying total matter distribution:

$$\Delta_{\rm g} = b\Delta_{\rm m}$$
 where $b \rightarrow b + \Delta b$, $\Delta b \propto f_{\rm NL} k^{-2}$

Local PNG thus boosts the clustering of galaxies on very large scales. The same problem of cosmic variance.

And – degeneracy between GR effects and PNG

Cosmic variance limits our ability to

- Measure the horizon-scale GR effects
- Measure PNG at the level $\sigma(f_{NL}) < 1$

Even the biggest and best future galaxy surveys – Euclid and SKA – will be unable to measure these effects *on their own.* (Yoo et al 2013, Alonso et al 2015, Raccanelli et al 2015)

However, with the multi-tracer method – i.e. using 2 different tracers of the matter stochastic DM distribution – we can detect the horizon-scale GR terms at high confidence, and achieve $\sigma(f_{NL}) < 1$

(Alonso & Ferreira 2015, Fonseca et al 2015)

Multi-tracer method – using SKA1 HI intensity mapping + Euclid photometric survey

- New information from the galaxy distribution on horizon scales
- Probe PNG well beyond the CMB precision new tests of inflation

THE HEADLINE MESSAGE

SKA1

- HI intensity mapping survey:
 - precise BAO, RSD up to $z\sim3$
 - excellent constraints on DE and modified gravity
 - probe the largest scales ever non-Gaussianity, modified gravity
- HI galaxy redshift survey: precise RSD at z<0.5
- Continuum survey: test isotropy of the universe good constraints on non-Gaussianity

SKA2

- HI redshift survey ('billion galaxy survey') will be the state of the art
- Radio lensing competitive with optical lensing surveys

SYNERGY

 Radio gives different systematics to optical/ IR – and the combination is stronger than each separately