Status of CHIME: The Canadian Hydrogen Intensity Mapping Experiment

Seth Siegel Postdoctoral Fellow McGill University

Photo Credit: Sasse

Outline

- Description of science goal
 - Measurement of the Baryon Acoustic Oscillations in the distribution of neutral hydrogen between redshifts 0.8 and 2.5.
- Virtual tour of CHIME
- Current status and first look at data
- Challenges
 - Foreground removal
 - Instrument characterization
 - Complex gain calibration
 - Beam calibration
 - RFI Excision / Mitigation
- Forecast on cosmological constraints

Baryon Acoustic Oscillations

Initial density perturbations result in sound waves that propagate in the photon-baryon fluid of the early universe. These are "frozen in" at recombination, leaving acoustic peaks in the CMB and matter power spectrum.

Evolution of a primordial density perturbation

Baryon Acoustic Oscillations

Movies by Adam Hincks: <u>http://adh-sj.info/bao_cmb.php</u>

BAO as Cosmological Ruler

Spectroscopic Galaxy Surveys

BAO in the Galaxy Correlation Function

Hydrogen Intensity Mapping

a collaboration between

THE UNIVERSITY OF BRITISH COLUMBIA

Dominion Radio Astrophysical Observatory

Drone Flight Over CHIME

Dominion Radio Astrophysical Observatory

 \mathcal{E} 4 $\rightarrow \mathcal{W}$

Movie by Peter Klagge

- Cylinder focuses light only in EW direction
- Gives us large FOV

Inter-institutional Laboratory for e-Astronomy Webinar

Haslam 408 MHz Map

CHIME Parameters

- 4 cylinders (each 20 m x 100 m)
 - 8,000 m² collecting area
- 1024 dual polarization feeds

Bandpass	400 MHz	800 MHz	
21cm redshift	2.5	0.8	
Beam Size	0.52° (45 Mpc)	0.26° (10 Mpc)	
E-W FoV	2.5°	1.3°	
N-S FoV	~100°		

- 390 kHz frequency resolution
- Maps 1/2 the sky each day
- T_{receiver} = 50 K
- 80 µJy / pixel daily sensitivity
- Collecting data since March.

- Cosmology
 - Cosmic variance limited
 measurement of BAO between
 z = 0.8 2.5
- Pulsars
 - Precise timing of known msec pulsars
- Fast Radio Bursts
 - Detect on order 10 FRBs per day

Reflector

UBC graduate student Meiling Deng who led design of CHIME cloverleaf antennas

Disk

Reflector

Analog Receiver Chain

Inter-institutional Laboratory for e-Astronomy Webinar

FPGA Digitizer and Channelizer (F-Engine)

<section-header>

Backplane 256 analog inputs

Bandura et al. 2016, JAI

10 Gbit/s Link over Optical Fiber (x1024)

Seth Siegel

Inter-institutional Laboratory for e-Astronomy Webinar

GPU Correlator (X-Engine)

Backends

- Cosmology
 - Full N² visibility matrix
 - 10 sec cadence
 - 135 TB/day
 - Real time flagging and gain calibration
 - Data compression through redundant baselines (0.5 TB/day)
- Pulsar timing
 - 10 steerable beams
 - 2.56 µs cadence
- Fast Radio Burst
 - 1024 stationary beams
 - 1 msec cadence
 - 16k frequency bins

Status

- First light ceremony on September 7, 2017
- Commissioning throughout Winter 2018
- Began collecting science data on March 27, 2018
 - Compression through truncation:
 - Saving 25% of all frequency bins
 - Frequencies with minimal RFI contamination covering 630 - 790 MHz
 - Saving 25% of all baselines
 - $|u_{ew}| \le 22m$ and $|u_{ns}| \le 20 m$
 - Also writing N² data to disk for 4 frequency bins to aid in development of real-time flagging, calibration, and compression algorithms.
- Expect to be at full capacity by October 2018

Efficiency During First Science Run				
	Number	Total	Fraction	
Analog Inputs	1900	2048	93%	
Frequency Bins	868	1024	85%	
Uptime	49 days	64 days	77%	

Radio Sky as seen by CHIME

702.34 MHz, YY Pol

"Dirty ring map" generated from a single sidereal day of CHIME N² data for a single frequency bin and single polarization (0.025% of total data).

Radio Sky as seen by CHIME

702.34 MHz, YY Pol

"Dirty ring map" generated from a single sidereal day of CHIME N² data for a single frequency bin and single polarization (0.025% of total data).

Color scale compressed by a factor of 2.5.

Radio Sky as seen by CHIME

702.34 MHz, YY Pol

"Dirty ring map" generated from a single sidereal day of CHIME N² data for a single frequency bin and single polarization (0.025% of total data).

Color scale compressed by a factor of 10.

Foregrounds

- Foregrounds are 10⁵ times brighter than the 21 cm signal.
- Foregrounds have a smooth spectrum, whereas the 21 cm signal varies rapidly with frequency because it originates from distinct structure along the line-of-sight direction.

Seth Siegel

Foregrounds

- Foregrounds are 10⁵ times
 brighter than the 21 cm signal.
- Foregrounds have a smooth spectrum, whereas the 21 cm signal varies rapidly with frequency because it originates from distinct structure along the line-of-sight direction.
- Unfortunately, frequency dependent instrumental effects convert the bright foreground signal into small-scale spectral structure.

Foregrounds

- Foregrounds are 10⁵ times
 brighter than the 21 cm signal.
- Foregrounds have a smooth spectrum, whereas the 21 cm signal varies rapidly with frequency because it originates from distinct structure along the line-of-sight direction.
- Unfortunately, frequency dependent instrumental effects convert the bright foreground signal into small-scale spectral structure.
- CHIME plans to characterize the transfer function of the instrument and construct optimal Karhunen-Loève filter that rotates measured data into signal/foreground modes.

$$V_{ij}(t) = \langle E_i(t)E_j^*(t) \rangle = g_i(t)g_j^*(t) \int d^2 \mathbf{\hat{n}} A_i(\mathbf{\hat{n}})A_j^*(\mathbf{\hat{n}})e^{2\pi i \mathbf{\hat{n}} \cdot \mathbf{u}_{ij}} T(\mathbf{\hat{n}};t)$$

• **Complex gain calibration:** Need to know complex gain to better than 0.3% on timescales > 1 minute

$$V_{ij}(t) = \langle E_i(t)E_j^*(t) \rangle = g_i(t)g_j^*(t) \int d^2 \mathbf{\hat{n}} A_i(\mathbf{\hat{n}})A_j^*(\mathbf{\hat{n}}) e^{2\pi i \mathbf{\hat{n}} \cdot \mathbf{u}_{ij}} T(\mathbf{\hat{n}};t)$$

• Beam calibration: Need to know primary beam to better than 0.1%

-0.10

-4

3

Ż

Ò

Hour Angle [deg]

1

 $^{-1}$

-2

-3

3

2

 $^{-1}$

-2

-3

-4

0

Hour Angle [deg]

1

- Currently calibrate complex receiver gain once per sidereal day by using the full visibility matrix to solve for the response of each feed to a stable, radio-bright point source (Cygnus A, Cassiopeia A, or Taurus A).
 - Results in amplitude stability at the 1% level and phase stability at the 0.01 radian level.
 - Most of the residual variation observed in amplitude is common mode (across feeds and frequency) and highly correlated with outside temperature.
 - Using a thermal model to interpolate between daily calibrator transits results in amplitude stability at the 0.5% level.

- Currently calibrate complex receiver gain once per sidereal day by using the full visibility matrix to solve for the response of each feed to a stable, radio-bright point source (Cygnus A, Cassiopeia A, or Taurus A).
 - Results in amplitude stability at the 1% level and phase stability at the 0.01 radian level.
 - Most of the residual variation observed in amplitude is common mode (across feeds and frequency) and highly correlated with outside temperature.
 - Using a thermal model to interpolate between daily calibrator transits results in amplitude stability at the 0.5% level.
- To ensure systematic errors due to gain fluctuations are negligible compared to statistical errors, we require stability at < 0.3% (amplitude) and < 0.003 radians (phase).
 - Investigating receiver dependent thermal models and broadband signal injection techniques to further improve calibration.

Beam Calibration

- Point Source Holography
 - Track radio-bright point source with John Galt 26m telescope as it drifts through the beam of the CHIME feeds
 - Correlate signal from 26m with signal from every CHIME feed
 - Extracts point source signal modulated by CHIME beam (plus any common background sky)
- Pulsar Holography
 - Subtract pulsar ON pulsar OFF to remove common background sky
 - ~100 msec cadence; implement in GPU
 - Characterize polarization response

Newburgh et al. 2014 Berger et al. 2016

Beam Calibration

RFI Excision

- Spectral-Kurtosis based implementation of pre-correlation RFI excision using CHIME's GPU backend.
- Increase the sensitivity of the RFI removal by combining samples from CHIME's 2048 independent feeds.
- This extra sensitivity allows for sub-millisecond RFI discrimination to detect quick broadband RFI pulses.
- Comparison with CHIME's pathfinder concludes the discrimination power scales with the size of the array.

Taylor et al. 2018 (in prep)

Slide courtesy of Jacob Taylor

Seth Siegel

Inter-institutional Laboratory for e-Astronomy Webinar

Survey Volume

Cosmology Forecast

Figure courtesy of Kevin Bandura

Cosmology Forecast

Dark energy equation of state: w = p / ρ

- Lines: Indicate range of (w₀, w_a) allowed by Planck 2013 and Union2.1 SNe data
- Error bars: Predicted 2-year CHIME sensitivity

Constraints on dark energy equation of state competitive with DOE Stage IV experiments (e.g., DESI, Euclid)

Fast Radio Bursts

- Bright bursts of radio emission
- Millisecond timescales
- Very high dispersion measure
 Located at cosmological distances
- Only 24 have been detected so far
 - Implies there are ~3000 FRBs per sky per day
- One found to repeat, localized to a dwarf galaxy 2.5 billion light-years away (Spitler et al. 2016, Chatterjee et al. 2017, Tendulkar et al. 2017)
- What are they? Lots of theories.
- CHIME expects to detect order 10 per day

Movie by NRAO Outreach: T. Jarrett (IPAC/Caltech) and B. Saxton (NRAO/AUI/NSF)

First Detection of FRBs between 400-800 MHz by CHIME/FRB

Figure 1: Dynamic spectrum plot after de-dispersion to $DM = 716.6 \text{ pc cm}^{-3}$. The time is relative to the topocentric (at 400 MHz) burst peak on 2018 July 25 at 17:59:43.115 UTC. Intensity data for the two beams in which FRB 180725A was detected are shown. These approximately 0.5° wide and circular beams were at RA, Dec = (06:13:54.7, +67:04:00.1; J2000) and RA, Dec = (06:12:53.1, +67:03:59.1; J2000). Some frequency channels with terrestrial radio frequency interference have been zero-weighted.

See Astronomer's Telegram ATEL #11902

Summary

- CHIME is a dedicated cosmology experiment designed to measure BAO in the large scale distribution of neutral hydrogen between redshifts 0.8 and 2.5.
- Challenges and uncertainties:
 - Foregrounds 10⁵ brighter than 21 cm signal.
 - Foreground avoidance and removal are active areas of research:
 - Foreground wedge (Parsons et al. 2012)
 - Karhunen-Loève filter (Shaw et al. 2014, 2015)
 - Will require characterization of the instrument at an unprecedented level.
 - Constraints will depend on HI density and bias of 21 cm sources.
 - Cosmological 21 cm signal detected in cross-correlation at z = 0.8 (Chang et al. 2010, Masui et al. 2013).
- CHIME is currently collecting science data.
- Experiment will reach full capacity by Fall. Survey will last 5 years.
 - Potential to yield Stage IV constraints on dark energy equation of state.

Thank you! Check out our website at: <u>www.chime-experiment.ca</u>