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CRUX
(how the sausage is made)



Galaxy morphology
● Hubble sequence 1926. Morphology as tied to galaxy 

formation history.

● Sets the scene to early 2000s: Sersic/Nuker profiles, 
CAS, M20, Gini, etc.

● Branched early 1990s; NNs, decision trees. Advent of 
empirical models.

● Galaxy Zoo biggest application of Hubble’s 
classifications on survey datasets, discovered central 
implications of Hubble’s model (eg. the relationship 
between galaxy bulge and spiral windings) could not be 
confirmed.

● Today; lots of empirical models.
Galaxy classification as proposed in Van den Bergh (1976). Normal spirals (Sa, 

Sb, Sc), anemic spirals (Aa, Ab, Ac) and lenticulars (S0a, S0b, S0c) order by disk-
to-bulge ratio



Galaxies as points in m-dimensional space
● I focused on spatial morphology: the patterns of pixels 

independent of band distribution or absolute flux 
densities.

● Abandon ex-ante classification: morphology as a 
continuous space.

● Aim is to engineer a mapping from multi-band galaxy 
thumbnails to an m-dimensional vector space such that:

○ Close things in vector space are morphologically 
similar.

○ Space is robust against distortion.
○ Space is invariant to symmetries.
○ Space implies testable hypotheses.

● I used a the GOODS-S subset of the CANDELS survey 
with coverage in F814W,F125W,F160W bands for all 
examples.



Engineered invariance

● Max. image composites: removes band 
information, retains spatial information.

● Magnitude scaling: relative flux densities 
only.

● Rotation: rotate brightness to vertical.

● Flipping: Reflect to top left.

● Background clipping: remove noise.

● Image scaling: compare like-for-like. 

Stages of the image processing pipeline: (a) rgb composite of 25 random galaxies (b) 
max images created by taking max pixel values across bands to create a compound 

image (c) background clipping and biggest connected component extraction (d) rotation 
to vertical (e) image scaling (f) flipping to align brightness to top left.



Reducing the space from m to k-dimensions
● A 40x40 thumbnail has 1600 dimensions. High 

dimensional spaces can lead to degeneracies collectively 
known as the “curse of dimensionality”.

● But pixels tend to be highly correlated with their 
neighbourhoods. We can exploit that to reduce the number 
of dimensions.

● PCA used to optimally (and deterministically) reduce 
dimensions from m to k via low-rank approximation; in this 
instance from m=1600 to k=49 (in paper k=12 but it’s a 
different image space).

Panel (a) illustrates some random galaxy max images. The sequence from b-f shows 
the reconstruction of the galaxies in panel (a) using 2,10,20,40,50 and 60 

eigenvectors respectively. Texture starts to meaningfully emerge at 40 eigenvectors 
i.e. panel (d).



Eigengalaxies are just eigenvectors reshaped

… and they’re pretty.

● First 49 eigengalaxies of the image space.

● They start bland and pick out gross 
features but get progressively more 
complex.

● Each eigengalaxy is orthogonal to every 
other thus the covariance of scores is 
always zero.



Testing implications: 1/3
● In a meaningful morphological space, near 

things should be visually similar.
 

● We can test that by looking at the n-nearest 
neighbours.

● Conversely, far away things should not be 
visually similar, but how do we test that?

In each panel the top left image is a randomly chosen galaxy and all the other images in 
the same panel are its nearest neighbours in the image space, ordered row-wise by 

proximity from top left to bottom right.



Testing implications: 2/3
● Space should be sensitive to covariance since 

we are interested in patterns.

● We can test that assumption by seeing how 
eigenvectors are affected by randomising.

● Total randomisation keeps range of values but 
loses marginal distributions and covariance.

● Column-wise randomisation keeps marginal 
distributions but removes covariance.

Explained variance ratio as a function of eigenvectors for PCA fitted to the preprocessed GZ 
CANDELS dataset. In panel (a) the data randomly shuffled. In panel (b) the data is shuffled only within 
columns so that dimensions retain their marginal distributions but all covariance is lost. In panel (c) the 
data is not randomised. For example, the EVR at k = 50 (close to the elbow in panel (c)) is  0.06,  ∼ ∼
0.29 and 0.86 respectively across the panels, thus illustrating the drastic impact of covariance EVR ∼

captured.



Testing implications: 3/3
● Clustering and outliers can be a problem for 

dimensionality reduction.

● We can test if they are by doing the reduction 
many times on subsets of data.

● The inclusion or exclusion of clusters or outliers 
make the variance jump around for the 
bootstrap statistic.

● We can use explained variance at k as a 
statistic to check.

Both graphs show histograms of 1000 PCA fittings on 70% of the data random 
sampled on each iteration. Panel (a) shows the explained variance ratio (EVR) 

for k = 49. Note that the EVR at k = 49 when the whole data is retained is  ∼
0.862. Panel (b) shows the EVR for the first eigenvector. Note that the EVR at 

k = 1 when the whole data is retained is  0.217.∼



Probabilistic interpretation
● It turns out that PCA is equivalent to a certain 

type of factor model which is equivalent to 
certain type of multivariate Gaussian.

● … So PCA is equivalent to a certain type of 
multivariate Gaussian …

● … which can be parameterised by a mean and 
covariance.

● The parameterisation turns out to be very 
useful for data summarisation. 

● The ability to assign likelihoods turns out to be 
useful for outlier detection and missing value 
prediction amongst other things.



Summarising & comparing datasets

● Mean and covariance are informative 
summaries for data.
 

● We can compare two image spaces by using 
the mean and covariance parameterisation 
of their multivariate Gaussian interpretations 
and plugging those into the Kullback-Leibler 
divergence.

● Divergence ranges from zero to infinity but 
we can get a sense of what it means in this 
context by benchmarking it on random 
samples.

Panel (a) shows the KL divergence of the factor model at increasing random sample sizes, 
relative to a factor model calculated on the whole data. At each size, 10 random samples were 

taken, the vertical lines represent the interquartile range. There is a diminishing return to 
larger samples. Panel (b) shows the KL divergence of the factor model at increasing levels of 
contamination, relative to a factor model calculated on uncontaminated data. Contamination 

was generated by creating a copy of the original data and shuffling the data within columns so 
as to remove covariance but preserve marginal distributions. There is a linear relationship 

between contamination and divergence, and it indicates that KL divergence is very responsive 
to structural change.

(has a closed form when P and Q are multivariate Gaussian)



APPLICATIONS
(sampling, clustering, searching, outlier 

detection, missing data prediction)



Sampling
● Random sampling are par for the course, but 

for big surveys (e.g. LSST, >10B objects) a big 
enough sample is still a huge dataset.

● We can do better than random sampling. One 
example is “leverage scores” sampling in which 
the probability of picking a point is weighted 
according to its impact.

● Some schemes enable sampling with an error 
which is independent of the number of points.

Graph shows increasing sample sizes versus the KL divergence of SRS 
(blue) and leverage scores (orange). Its noteworthy that a  20% leverage ∼

scores sample has the equivalent KL divergence of  50% SRS sample: 2.5 ∼
times fewer rows.



Clustering
● The linear space makes it easy to create a 

“distance matrix”: how far away everything is 
from everything else.

● Lots of clustering algorithms take the distance 
matrix as a starting point: k-mediods, dbscan, 
hclust, etc.

● A great one is affinity propagation. 
Approximately optimal exemplar clustering. No 
need to specify the number of clusters.

Composite image samples of six morphological clusters from a total of 462 created 
using affinity propagation clustering of a distance matrix defined by pairwise Euclidean 

distances in 49D image space. Each 40 × 40 pixel thumbnail image is an RGB 
composite of the F160W, F125W, and F814W bands.



Similarity search
● Given some reference galaxy, a similarity 

search is just an ordering of the rest of the 
galaxies by distance to the reference.

Examples of similarity searches. In each 40x40 thumbnail image (an RGB composite 
of the F160W, F125W, and F814W bands), the exemplar galaxy is given in the top left, 

followed by 24 of its nearest neighbours by Euclidean distance in the 49D space.



Missing data prediction
● There is an expectation maximisation algorithm 

for fitting the probabilistic version of PCA.

● It can be modified to maximise over latent and 
missing values simultaneously.

● This enables a natural way of imputing missing 
values whilst fitting PCA.

● Benefit is high fidelity predictions which take 
into account a lot of structure; difficult to match 
by other methods.



Outlier detection
● We can think of outliers as “rare” thumbnails.

● ...and “rare” as unlikely.

● The probabilistic interpretation allows us to 
assign likelihood to all galaxy points, hence 
sorting by likelihood is a simple way to identify 
outliers.

Panel (a) shows the 25 least likely galaxies. Noise or extremely sparse signal is 
predominent. This may be expected since the image space is only sensitive to visual 

features. Panel (b) shows the 24 most likely galaxies. Panel (c) shows the 25 least likely 
galaxies under a different image space which is sensitive to band distribution and 

absolute magnitude (Uzeirbegovic et al. 2020). It shows not only anomalous detections 
and artefacts but also systems that are known to be rare, such as dust lanes which are 
signposts of recent minor mergers (see e.g. Kaviraj et al. 2012), ongoing mergers (see 

e.g. Darg et al. 2010) and edge-on spirals which appear to be accreting a blue 
companion.



WORK IN PROGRESS
(simulations, z-morphology,better sampling)



FIN.


	Slide 1
	CRUX
	Galaxy morphology
	Galaxies as points in m-dimensional space
	Engineered invariance
	Reducing the space from m to k-dimensions
	Eigengalaxies are just eigenvectors reshaped
	Testing implications: 1/3
	Testing implications: 2/3
	Testing implications: 3/3
	Probabilistic interpretation
	Summarising & comparing datasets
	APPLICATIONS
	Sampling
	Clustering
	Similarity search
	Missing data prediction
	Outlier detection
	WORK IN PROGRESS
	FIN.

