
The Next Generation

WeakLensing

Eric Huff (JPL) 
Tim Eifler (JPL) 

Erin Sheldon (BNL)  
Rachel Mandelbaum (CMU)



What I’m going to talk about:

1. Lensing measurement: 
• why it’s hard 
• how to solve it 

2. Lensing from galaxy kinematics 
• how it works 
• how I’m hoping to measure it



Lensing is sensitive  
to both growth and geometry:

lens mass 
and distances 

modify deflection 
angle



Weak lensing is a key probe of the growth of 
structure.



Galaxy shape and matter fluctuations are 
correlated by lensing.

Galaxy Shear Power SpectrumMatter Power Spectrum

• Well understood dependence on 
cosmological parameters 

• ‘Sharp’ features (e.g., BAO)
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Fig. 1.— Subdividing the source population. Partitioning the
galaxies by the median redshift (or distance D) yields lensing effi-
ciencies with strong overlap.

assumes that the redshift distributions are sufficiently wide
to encompass many wavelengths of the relevant fluctua-
tions (2π/kℓ) along the line of sight so that the Limber
equation holds even tomographically (see Kaiser 1998).

These power spectra define the cosmic signal. Shot noise
in the measurement from the intrinsic ellipticity of the
galaxies adds white noise to the cosmic signal making the
observed power spectra

Cij(ℓ) = P
κ
ij(ℓ) +

〈

γ2
int

〉

δij/n̄i , (4)

where
〈

γ2
int

〉1/2
is the rms intrinsic shear in each compo-

nent, and n̄i is the number density of the galaxies per
steradian on the sky in the whole distribution ni(z).

The distributions ni(z) need not be physically distinct
galaxy populations. Consider a total distribution n(z)
with

[

n
dz

dD

]

(D) ∝ Dα exp[−(D/D∗)
β ] , (5)

which roughly approximates that of a magnitude-limited
survey, and take α = 1, β = 4 for definiteness (assumed
throughout unless otherwise stated). One can subdivide
the sample into redshift bins to define the distributions
ni(z). The power spectra for cruder partitions can always
be constructed out of finer ones: if the j and k bins are
combined, then

n̄2
j+kP

κ
(j+k)(j+k) = n̄2

jP
κ
jj + 2n̄jn̄kP

κ
jk + n̄2

kP
κ
kk ,

n̄j+kP
κ
i(j+k) = n̄jP

κ
ij + n̄kP

κ
ik . (6)

In Fig. 1, we show an example where the galaxies with
z < zmedian are binned into n1 and the rest into n2. Here
and throughout we will take our fiducial cosmology as an
adiabatic CDM model with matter density Ωm = 0.35,
dimensionless Hubble constant h = 0.65, baryon density
Ωb = 0.05, cosmological constant ΩΛ = 0.65, neutrino
mass mν = 0.7 eV, the initial potential power spectrum
amplitude A, and tilt nS = 1.

We also plot in Fig. 1 the lensing efficiency func-
tion gi(D). Notice that despite having non-overlapping
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Fig. 2.— Power spectra and cross correlation for a subdivision in
two across the median redshift zmedian = 1 and errors for a survey

of 5◦ on the side,
〈

γ2
int

〉1/2
= 0.4, and n̄ = 2 × 105 deg−2. Note

the strong correlation Rij between the two power spectra make the
combination of the power spectra less constraining than a naive
interpretation of the individual errors would imply.

source distributions (upper panel), the lensing efficiencies
strongly overlap (bottom panel) implying that the result-
ing convergence maps will have a correspondingly large
cross correlation. This is of course because the high and
low redshift galaxies alike are lensed by low-redshift struc-
tures. Also for this reason, there will be always be a
stronger signal in the high redshift bins. This fact will
be important for signal-to-noise considerations in choos-
ing the bins.

All of these properties can be seen in Fig. 2, where we
plot the resultant power spectra and their cross correlation
for the equal binning of Fig. 1.

3. REDSHIFT BINNING AND PARAMETER ESTIMATION

While subdividing the sample into finer bins always in-
creases the amount of information, there are two consid-
erations that limit the effectiveness of redshift divisions.
The first is set by the shot noise from the intrinsic ellip-
ticities of the galaxies. Once the number density n̄i per
bin is so small that shot noise surpasses the signal in equa-
tion (4), further subdivision no longer helps. The point at
which this occurs depends on the angular scale of inter-
est. The greater number of galaxies encompassed by the
larger angular scales boosts the signal to noise (see Fig. 2
and Kaiser 1992). Based on this criterion, one should sep-
arately subdivide the data to extract the maximal large
and small angle information.

However there is a second consideration. If the lens-
ing signal does not change significantly across the red-
shift range of the whole distribution, then subdivision will
not add information. These considerations can be quanti-
fied by considering the correlation coefficient between the
power spectra of the subdivisions: Rij = Pκ

ij/(Pκ
iiP

κ
jj)

1/2.
For the model of Fig. 2, the power spectra are highly cor-
related (R12 ∼ 0.8) even with only two subdivisions. Thus
even though there is enough signal to noise to subdivide
the sample further, one gains little information by doing
so.

• Smooth in scale and redshift 
• Weak, hard to measure 
• …but observable



Understanding the physics of cosmic acceleration  
requires measuring the growth of structure.16 The Dark Energy Survey Collaboration

Figure 11. Non-tomographic DES SV (blue circles), CFHTLenS
K13 (orange squares) and Planck (red) data points projected
onto the matter power spectrum (black line). This projection is
cosmology-dependent and assumes the Planck best fit cosmology
in ⇤CDM. The Planck error bars change size abruptly because
the C`s are binned in larger ` bins above ` = 50.

of the point is the median of the window function of the
P (k) integral used to predict the observable (⇠+ or C`). The
height of the point is given by the ratio of the observed to
predicted observable, multiplied by the theory power spec-
trum at that wavenumber. For simplicity we use the no-
tomography results from each of DES SV and CFHTLenS
(K13). The results are therefore cosmology dependent, and
we use the Planck best fit cosmology for the version shown
here. The CFHTLenS results are below the Planck best fit
at almost all scales (see also discussion in MacCrann et al.
2014). The DES results agree relatively well with Planck up
to the maximum wavenumber probed by Planck, and then
drop towards the CFHTLenS results.

6.2 Dark Energy

The DES SV data is only 3% of the total area of the full
DES survey, so we do not expect to be able to significantly
constrain dark energy with this data. Nonetheless, we have
recomputed the fiducial DES SV constraints for the second
simplest dark energy model, wCDM, which has a free (but
constant with redshift) equation of state parameter w, in
addition to the other cosmological and fiducial nuisance pa-
rameters (see Section 3). The purple contours in Figure 12
show constraints on w versus the main cosmic shear param-
eter S8; we find DES SV has a slight preference for lower
values of w, with w < �0.68 at 95% confidence. There is a
small positive correlation between w and S8, but our con-
straints on S8 are generally robust to variation in w.

The Planck constraints (the red contours in Figure 12)
agree well with the DES SV constraints: combining DES SV
with Planck gives negligibly di↵erent results to Planck alone.
This is also the case when combining with the Planck+ext
results shown in grey. Planck Collaboration et al. (2015b)

Figure 12. Constraints on the dark energy equation of state w
and S8 ⌘ �8(⌦m/0.3)0.5, from DES SV (purple), Planck (red),
CFHTLenS (orange), and Planck+ext (grey). DES SV is consis-
tent with Planck at w = �1. The constraints on S8 from DES SV
alone are also generally robust to variation in w.

discuss that while Planck CMB temperature data alone do
not strongly constrain w, they do appear to show close to a
2� preference for w < �1. However, they attribute it partly
to a parameter volume e↵ect, and note that the values of
other cosmological parameters in much of the w < �1 region
are ruled out by other datasets (such as those used in the
‘ext’ combination).

Planck CMB data combined with CFHTLenS also show
a preference for w < �1 (Planck Collaboration et al. 2015b).
The CFHTLenS constraints (orange contours) in Figure 12
show a similar degeneracy direction to the DES SV results,
although with a preference for slightly higher values of w
and lower S8. The tension between Planck and CFHTLenS
in ⇤CDM is visible at w = �1, and interestingly, is not fully
resolved at any value of w in Figure 12. This casts doubt on
the validity of combining the two datasets in wCDM.

7 CONCLUSIONS

We have presented the first constraints on cosmology from
the Dark Energy Survey. Using 139 square degrees of Science
Verification data we have constrained the matter density of
the Universe ⌦m and the amplitude of fluctuations �8, and
find that the tightest constraints are placed on the degener-
ate combination S8 ⌘ �8(⌦m/0.3)0.5, which we measure to
7% accuracy to be S8 = 0.81± 0.06.

DES SV alone places weak constraints on the dark
energy equation of state: w < �0.68 (95%). These do
not significantly change constraints on w compared to
Planck alone, and the cosmological constant remains within
marginalised DES SV+Planck contours.

The state of the art in cosmic shear, CFHTLenS, gives
rise to some tension when compared with the most powerful
dataset in cosmology, Planck (Planck Collaboration et al.

MNRAS 000, 1–20 (2015)

Key signature: disagreement between early-time 
forecasts and late-time structure measurements



For this reason, lensing is a key driver  
of the Stage IV dark energy experiments.
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.

Bridle et al. 2008

The success of these programs depends on the 
accuracy of lensing shear measurement.

2 Viola et al.

and a novel one which employs a third-order relation. We inves-
tigate the validity of the PSF-correction approach in Sect. 4 and
comment on the possibility of an improved correction for PSF el-
lipticities. We conclude in Sect. 5.

2 WEAK LENSING BASICS

This section summarises the basic weak-lensing concepts that
will be used later. For a complete overview we refer to
Bartelmann & Schneider (2001). An isolated lens with surface
mass density Σ(θ) has the lensing potential

Ψ(θ) =
4G
c2

DlDs

Dls

∫

d2θ′Σ(θ′) ln |θ − θ′|, (1)

where G and c are the usual constants and Dl,s,ls are the angular-
diameter distances between the observer and the lens, the observer
and the source, and the lens and the source, respectively.

To sufficient accuracy, light rays are deflected by the angle

α(θ) = ∇Ψ(θ) , (2)

which relates the angular positions of the source β and the image
θ on the sky by the lens equation

β = θ −α(θ) . (3)

If the lens mapping changes little across the solid angle of a source,
the lens mapping can be locally linearised to describe the image
distortion the Jacobian matrix

A ≡
∂β
∂θ

=

(

δij −
∂2Ψ(θ)
∂θi∂θj

)

=

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

,

(4)
with the convergence

κ(θ) =
1
2
(Ψ11 +Ψ22) (5)

and the two components

γ1 =
1
2
(Ψ11 −Ψ22) , γ2 = Ψ12 (6)

of the complex shear γ = γ1 + iγ2. Image distortions measure the
reduced shear

g =
γ

1− κ
(7)

instead of the shear γ itself. To linear order, θ and β are related by

βi = Aijθ
j . (8)

2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫

I(θ)θiθj ...θkd
2θ . (9)

Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
(Q11 −Q22) + 2iQ12

Q11 +Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by

χs =
χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)

〉

. (12)

If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by

g ≃
⟨χ⟩

2(1− σ2
χ)

+
⟨χ⟩3

8

1− 5σ2
χ

(1− σ2
χ)4

+O(⟨χ⟩5) (13)

where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to

χα =
1

Tr(Q)

∫

d2θIobs(θ)ηαW

(

|θ|2

σ2

)

, (16)
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accuracy of lensing shear measurement.
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linear(ized) 
remapping 

of the image
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.



Bridle et al. 2008

The success of these programs depends on the 
accuracy of lensing shear measurement.

2 Viola et al.

and a novel one which employs a third-order relation. We inves-
tigate the validity of the PSF-correction approach in Sect. 4 and
comment on the possibility of an improved correction for PSF el-
lipticities. We conclude in Sect. 5.

2 WEAK LENSING BASICS

This section summarises the basic weak-lensing concepts that
will be used later. For a complete overview we refer to
Bartelmann & Schneider (2001). An isolated lens with surface
mass density Σ(θ) has the lensing potential

Ψ(θ) =
4G
c2

DlDs

Dls

∫

d2θ′Σ(θ′) ln |θ − θ′|, (1)

where G and c are the usual constants and Dl,s,ls are the angular-
diameter distances between the observer and the lens, the observer
and the source, and the lens and the source, respectively.

To sufficient accuracy, light rays are deflected by the angle

α(θ) = ∇Ψ(θ) , (2)

which relates the angular positions of the source β and the image
θ on the sky by the lens equation

β = θ −α(θ) . (3)

If the lens mapping changes little across the solid angle of a source,
the lens mapping can be locally linearised to describe the image
distortion the Jacobian matrix

A ≡
∂β
∂θ

=

(

δij −
∂2Ψ(θ)
∂θi∂θj

)

=

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

,

(4)
with the convergence

κ(θ) =
1
2
(Ψ11 +Ψ22) (5)

and the two components

γ1 =
1
2
(Ψ11 −Ψ22) , γ2 = Ψ12 (6)

of the complex shear γ = γ1 + iγ2. Image distortions measure the
reduced shear

g =
γ

1− κ
(7)

instead of the shear γ itself. To linear order, θ and β are related by

βi = Aijθ
j . (8)

2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫

I(θ)θiθj ...θkd
2θ . (9)

Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
(Q11 −Q22) + 2iQ12

Q11 +Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by

χs =
χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)

〉

. (12)

If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by

g ≃
⟨χ⟩

2(1− σ2
χ)

+
⟨χ⟩3

8

1− 5σ2
χ

(1− σ2
χ)4

+O(⟨χ⟩5) (13)

where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)
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I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to

χα =
1

Tr(Q)

∫

d2θIobs(θ)ηαW

(

|θ|2

σ2

)

, (16)
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comment on the possibility of an improved correction for PSF el-
lipticities. We conclude in Sect. 5.
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g =
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instead of the shear γ itself. To linear order, θ and β are related by
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2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫

I(θ)θiθj ...θkd
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Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
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Q11 +Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by
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1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗
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If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by
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+
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where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.
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object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)

〉

. (12)

If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by
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where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
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which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
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Since we are interested in the object’s unconvolved and unweighted
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assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
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given by Eq. (11). Weighting changes Eq. (10) to
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and a novel one which employs a third-order relation. We inves-
tigate the validity of the PSF-correction approach in Sect. 4 and
comment on the possibility of an improved correction for PSF el-
lipticities. We conclude in Sect. 5.
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will be used later. For a complete overview we refer to
Bartelmann & Schneider (2001). An isolated lens with surface
mass density Σ(θ) has the lensing potential

Ψ(θ) =
4G
c2

DlDs

Dls

∫

d2θ′Σ(θ′) ln |θ − θ′|, (1)
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and the source, and the lens and the source, respectively.

To sufficient accuracy, light rays are deflected by the angle
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Q is the total flux,Qi defines the centroid of the image, and higher-
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Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as
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The complex ellipticity χ is related to the reduced shear g by
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(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
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If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by
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where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
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which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to
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which relates the angular positions of the source β and the image
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instead of the shear γ itself. To linear order, θ and β are related by
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2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫
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Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
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. (10)

The complex ellipticity χ is related to the reduced shear g by
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, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈
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If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by
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where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to
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where G and c are the usual constants and Dl,s,ls are the angular-
diameter distances between the observer and the lens, the observer
and the source, and the lens and the source, respectively.

To sufficient accuracy, light rays are deflected by the angle

α(θ) = ∇Ψ(θ) , (2)

which relates the angular positions of the source β and the image
θ on the sky by the lens equation
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reduced shear

g =
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instead of the shear γ itself. To linear order, θ and β are related by
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2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫

I(θ)θiθj ...θkd
2θ . (9)

Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
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. (10)

The complex ellipticity χ is related to the reduced shear g by

χs =
χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =
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χ− 2g + g2χ∗
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nent does not vanish, Eq. (12) is solved by
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where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to
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g and χ 
are related…

How do we get g from a galaxy image?
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.
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Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
(Q11 −Q22) + 2iQ12

Q11 +Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by

χs =
χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)

〉

. (12)

If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by

g ≃
⟨χ⟩

2(1− σ2
χ)

+
⟨χ⟩3

8

1− 5σ2
χ

(1− σ2
χ)4

+O(⟨χ⟩5) (13)

where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
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which has a perfect response to shear, i.e. the shear responsivity is
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distortion the Jacobian matrix

A ≡
∂β
∂θ

=

(

δij −
∂2Ψ(θ)
∂θi∂θj

)

=

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

,

(4)
with the convergence

κ(θ) =
1
2
(Ψ11 +Ψ22) (5)

and the two components

γ1 =
1
2
(Ψ11 −Ψ22) , γ2 = Ψ12 (6)

of the complex shear γ = γ1 + iγ2. Image distortions measure the
reduced shear

g =
γ

1− κ
(7)

instead of the shear γ itself. To linear order, θ and β are related by

βi = Aijθ
j . (8)

2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫

I(θ)θiθj ...θkd
2θ . (9)

Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
(Q11 −Q22) + 2iQ12

Q11 +Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by

χs =
χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)

〉

. (12)

If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by

g ≃
⟨χ⟩

2(1− σ2
χ)

+
⟨χ⟩3
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1− 5σ2
χ

(1− σ2
χ)4

+O(⟨χ⟩5) (13)

where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to

χα =
1

Tr(Q)

∫

d2θIobs(θ)ηαW

(

|θ|2

σ2

)

, (16)
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and a novel one which employs a third-order relation. We inves-
tigate the validity of the PSF-correction approach in Sect. 4 and
comment on the possibility of an improved correction for PSF el-
lipticities. We conclude in Sect. 5.
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is
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which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.
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Kaiser, Squires, Broadhurst (1995)

Metacalibration 5

Figure 1. Left: Normalized distribution of metacalibration shear responsivities from regaussianization, on the Control-Ground-Constant
branch of the GREAT3 simulations. Right: Distribution of metacalibration PSF ellipticity responsivities from regaussianization, on the
Control-Ground-Constant branch of the GREAT3 simulations. A vertical red dashed line is drawn for reference at the expected responsivity
for perfectly round objects, R = 2, in the left panel.

simulations (e.g., Mandelbaum et al. 2005, 2012, 2013,
2015).
The outputs of the re-Gaussianization algorithm are

PSF-corrected “distortions”, which for an object with
purely elliptical isophotes with minor-to-major axis ratio
q and position angle ✓ with respect to the x axis in pixel
coordinates are defined as

(e
1

, e

2

) =
1 � q

2

1 + q

2

(cos 2✓, sin 2✓) . (9)

As discussed in Bernstein & Jarvis (2002), the response
of a distribution of galaxies with some intrinsic distribu-
tion of distortions p(e) to a shear depends on the p(e)
itself. Conceptually, we can think of an ensemble shear
estimator using re-Gaussianization outputs as

ĝ

j

=
he

j

i
dhe

j

i/dg
j

(10)

where the denominator gives the response of the ensem-
ble average distortion to a shear (often called the respon-
sivity). Estimators of this shear responsivity use the
observed galaxy p(e) and its moments, and for typical
p(e), the denominator is around 1.7–1.8 ⇡ 2(1 � e

2

RMS

)
in terms of the per-component RMS distortion. As this
implementation was meant to be a simple and fast ex-
ample, its intrinsic calibration correction is a simple one
that does not include all known systematics.

3.2.2. KSB

The KSB method (Kaiser et al. 1995) parametrises
galaxies and stars according to their weighted quadrupole
moments. The main assumption of the KSB method is
that the PSF can be described as a small but highly
anisotropic distortion convolved with a large circularly
symmetric function. With that assumption, the shear
can be recovered to first-order from the observed ellip-
ticity of each galaxy via

g = P

�1

g

✓
e

obs � P

sm

P

sm⇤ e
⇤
◆
, (11)

where asterisks indicate quantities that should be mea-
sured from the PSF model at that galaxy position, P sm

is the smear polarisability (see Heymans et al. 2006 for
definitions) and P

g

is the correction to the shear polar-
isability that includes the smearing with the isotropic
component of the PSF. The ellipticities are constructed
from weighted quadrupole moments, and the other quan-
tities involve higher order moments. A circular Gaus-
sian weight of scale length r

g

is used, where r

g

is galaxy
size, as determined by the second moment of the surface-
brightness profile.
The KSB method returns a per-object estimate of the

shears (ĝ
1

, ĝ

2

). We can use metacalibration to remove
multiplicative and additive biases that come from aver-
aging the per-object KSB shear estimates.

3.2.3. Linear Moments

As mentioned previously, the third method we use does
not involve PSF-corrected galaxy shapes. Instead, we use
linear combinations of the second moments of galaxy im-
ages. The motivation behind this choice is as follows.
One way to estimate the distortion (e

1

, e

2

) is via combi-
nations of the second moments of the light profile,

hx
i

i =
R
x

i

w(x)I(x)d2xR
w(x)I(x)d2x

(12)

for i = 1, 2,
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ij
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i)(x
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i)w(x)I(x)d2xR
w(x)I(x)d2x

(13)

for i, j = 1, 2, and finally
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12
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. (14)

One source of noise (and noise bias) in traditional
moments-based methods is the division of two noisy
quantities in Eq. 14, typically followed by further division
by other noisy quantities to remove the dilution of the
galaxy shape by the PSF. Thus, as a final example of a
statistic that we will attempt to use as a calibrated shear
estimator with metacalibration, we define the following
linear combinations of moments:

M̂

i

= (M
11

� M

22

, 2M
12

). (15)

1. Compute second moments. 
2. Calculate the responses to shear (Pg) and 

PSF ellipticity (Psm). 
3. Correct for PSF ellipticity (e*).

This doesn’t seem that bad.
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Figure 17. Multiplicative and additive biases for constant-shear branches in the control (left) and realistic galaxy (right) experiments,
for ground (top) and space (bottom) branches. For each branch, we show the averaged (over components) multiplicative bias ⟨m⟩ vs.
c+, the additive bias term defined in the coordinate system defined by the PSF anisotropy. The axes are linear within the target region
(|m| < 2× 10−3 and |c| < 2× 10−4, shaded grey) and logarithmic outside that region.

Figure 16. Comparison between the Qv predicted from the
constant-shear branch results (CGC), and the actual Qv results
for variable shear (CGV).

sitive than Qv. The results for Amalgam@IAP and CEA-
EPFL are good in many branches, but exhibit significant
fluctuations due to partial cancellations of biases. The re-
sults for Fourier_Quad with a realistic weighting scheme
are quite good, but degraded compared to the results with
the unrealistic weighting schemes.

The errorbars in Fig. 15 show that for lower Q values,
the uncertainty in Q is very small. However, near the tar-
get Q values, small uncertainties in m and c become large
uncertainties in Q. These errorbars are quite non-Gaussian,
so for example the difference between Q = 500 and 1000 for
control space branches is significantly more than the 2σ sug-
gested by the plot. It is apparent that in many branches, 2–3
teams performed well enough that the differences between
their Q values (and between the target of ∼ 1000) are not
statistically significant.

One basic question is whether the results in the constant
and variable shear branches are consistent. We cannot di-
rectly compare Qc and Qv, because they respond to system-
atic errors in different ways. However, for a given constant-
shear submission, we can use the recovered m and c values
to predict Qv by simulating variable shear submissions with
those m and c, and then checking their Qv. Comparing the

c⃝ 0000 RAS, MNRAS 000, 000–000

Alas, still broad dissensus in lensing results.

Mandelbaum et al. 2014
GREAT3 Shear Calibration Community Challenge 
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Figure 9. The 2D bias surface as a function of model SNR and R. The top panels show the multiplicative bias surface, m
1

on the left
and m

2

on the right. The bottom panels show the additive bias components, c
1

on the left and c
2

on the right. Each point in the plot
has equal lensfit weight.

features of the bias surface. The resulting interpolation al-
lowed us to query the multiplicative bias in both components
for any parameter pair, at least in the area covered by the
given SNR and R range shown in Fig. 9.

Finally, we tried a simpler calibration strategy, method
C, which was to not fit or interpolate the bias surface, but
rather to assign the bias determined in each of the 20 ⇥ 20
bins to the galaxies that fall in each bin.

We test the di↵ering calibration strategies, by investi-
gating the derived multiplicative bias as a function of SNR
and R according to methods A, B or C, for all galaxies
with shape measurement in the simulation. In each bin of
the analysis we calculate the lensfit-weighted average mul-
tiplicative bias correction and apply it to the average mea-
sured ellipticity in the bin according to equation 9. After-
wards, we recalculate the bias. The results for each method
are presented in Table 2 in terms of the total bias and in
Figs. 10 and 11 as a function of the key output and input
quantities. The total multiplicative bias after we apply the
calibration is around or below the percent level in both shear
components for all three methods. It vanishes completely, by
construction, within its error bars for the bin-based calibra-
tion method C. In terms of our 1% target window, method
A fails to deliver a robust calibration over the full R range.
Methods B and C do clearly better and robustly calibrate
the residual bias over the full R range. An exception are ex-
tremely small, high R objects, which represent only a small
population in the image simulations. The very last bin in
R, where methods B and C show a residual bias of 2%,
accounts for 7% of the total lensfit weight in the sample.

The picture is similar in terms of the calibration per-
formance as a function of SNR. Method C performs best
and only marginally falls out of our target accuracy for ob-

jects with SNR < 7. The reason why this method shows a
residual bias at all, is the fact that the binning scheme we
used for this analysis di↵ers in both the number of bins and
its 1-dimensional nature from the 20 ⇥ 20 SNR-R binning
scheme that we used to derive the calibration. The first SNR
bin in Fig. 10, where methods B and C show residual multi-
plicative biases of -3.5% and 1.5%, respectively, contributes
7% to the lensfit weight in the full sample. In the extremely
low SNR regime (⇠ 10), the interpolation based method B
performs much worse than C, likely due to less robust inter-
polation result near the edges of the initial bias surface. In
the final analysis and considering all mentioned e↵ects, we
find that method C provides the most robust calibration of
the multiplicative bias and it will be our default method.

In order to test the dependence of this calibration on the
number of bins used to characterise the multiplicative bias
surface, we investigated the measured bias as a function of
the number of 2D bins used. We find that if the number
of bins is too small, the calibration is not able to pick up
all relevant features in the bias surface and hence existing
residual bias remains uncalibrated. Using more than ten bins
starts to remedy the problem and a 20 bin scheme is the first
calibration that delivers a robust calibration within 1% for
the full range of SNR and R, with the exception of very
small objects with R > 0.9, which contribute only a small
fraction of the sample’s total lensfit weight.

We might hope that when the residual bias, after apply-
ing the calibration, is measured as a function of input mag-
nitude and size, it should be consistent with zero. However,
this is not the case, as shown in Fig. 11. All the calibration
schemes show a small positive bias for objects with bright
input magnitudes (m<

⇠

23) and small galaxies (rab <
⇠

0.200),
and a negative bias at faint magnitudes which becomes large

MNRAS 000, 1–28 (2016)

Fenech Conti et al. 2016

Shear measurement biases have complex 
dependencies on galaxy properties.
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Figure 7. The multiplicative shear bias m (top) and additive shear bias c (bottom) as a function of measured galaxy properties. The
left panels shows the bias with and without lensfit self-calibration as a function of measured model SNR. The right panels show the same
measurements as a function of R. The grey band in the top panels indicates the requirement on the knowledge of the multiplicative bias
set by Hildebrandt et al. (2016b) in the context of a cosmic shear analysis.

nificant size-dependent shear bias in their null test of Dark
Energy Survey galaxy-galaxy lensing: this bias may have
been the result of the selection-induced size bias we have
discussed here, and in general, tests of the dependence of
shear on measured galaxy size should be avoided as a null
test.

In the following sections, we investigate the full bias
introduced by the noisy measurement process: this bias in-
cludes the object selection bias discussed in §4.2 and we
should be mindful of the artificial biases of this section when
investigating the size dependence and when deriving a cali-
bration relation: biases as a function of galaxy size measured
in noisy simulations may have a significant contribution from
the calibration selection bias. Provided the simulated galaxy
distributions match well the data distributions, any derived
calibration relation should correctly include such e↵ects and
should result in correctly calibrated data, but it makes sense
to minimise the e↵ect of the choice of size definition by cali-
brating using rab rather than r, as this should minimise the
sensitivity to any mismatch between data and simulations.

4.4 lensfit results

We start the analysis of the noisy measurement biases by
quantifying the impact of the lensfit self-calibration (see
§2.2) on the recovered shear biases. This is done by simply
removing the self-calibration corrections (which are reported
in the catalogue) from the measured galaxy ellipticities be-
fore computing the shear. Without the self-calibration we
find that the average multiplicative bias for the full galaxy
sample is ⇠-4% in both components. This number reduces
to ⇠-2% in each component once we use the lensfit self-
calibration. We report the exact values, together with their
errors, in Table 2. Even more dramatic is the reduction of
the additive bias when we use the self-calibrated version of
lensfit: it reduces by a factor five in c

1

and by a factor of
three in c

2

. This is extremely encouraging, in particular for
cosmic shear analysis, where a large additive bias hampers
the ability to measure the cosmological signal at large angu-
lar separations (e.g. Heymans et al. 2013; Hildebrandt et al.
2016b).

We also explore the impact of misclassified stars on the
average bias in the simulations. In fact, lensfit occasionally

MNRAS 000, 1–28 (2016)
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At low signal-to-noise,  
most estimators are biased.

The size and direction of these biases 
depends greatly on the details, including 

sub-threshold galaxy population
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Figure 13. Shear bias for IM3SHAPE measurements on the GREAT-DES simulation: multiplicative bias (left) and PSF leakage (right), as functions of the
measured (S/N)

w

and R
gp

/R
p

. The fits, which are used to calibrate the shear estimates on the data, are smooth functions in both of these variables. Solid
lines show the fits vs (S/N)

w

at particular choices of R
gp

/R
p

.

function of pixel intensities affected by Gaussian noise, resulting in
noise bias in the estimated shear values. The IM3SHAPE algorithm,
being a maximum likelihood estimator, is known to suffer from this
effect.

In addition, we found a small selection bias, which is intro-
duced by using recommended IM3SHAPE flags (cf. §7.3.3) and the
selection based on galaxy size and S/N (cf. §9.1). We also expect
a small amount of model bias due to realistic galaxies not always
being well fit by our bulge-or-disc model. This model bias is ex-
pected to be small compared to the requirements (Kacprzak et al.
2014).

To account for all of these sources of error in our shape
measurements, we calculated bias corrections of the form shown
in equation 3.4. Specifically, we fit for m and ↵ as functions of
(S/N)

w

(defined in equation 7.3) and R

gp

/R

p

(the FWHM of the
PSF-convolved galaxy divided by the FWHM of the PSF) on sim-
ulated data from the GREAT-DES simulation (cf. §6.1). We ran
IM3SHAPE on the simulated data in the same way as we do on the
DES data, including the same choices of input parameters.

In principle, the two multiplicative terms, m
1

and m

2

should
be treated as independent biases. In practice, however, when av-
eraged over many galaxies we find virtually no difference be-
tween the two. As such, we correct both e

1

and e

2

by the average
m = (m

1

+ m

2

)/2.
We fit both m and ↵ as two-dimensional surfaces in the S/N

and size parameters. Due to the complicated structure of this sur-
face, we fit m with 15 terms of the form (S/N)�x

w

(R
gp

/R

p

)�y ,
where x and y are various powers ranging from 1.5 to 4. To control
overfitting, we used a regularization term in the least-square fit and
optimized it such that the fitted surface has a reduced �

2 = 1. A
similar procedure was applied to ↵, where we used 18 parameters
in the fit. In Figure 13 we show these fits as curves in (S/N)

w

in
bins of R

gp

/R

p

. However, the actual functions are smooth in both
parameters.

We checked if our calibration is robust to the details of this
model by (1) varying the number of terms in the basis expansion
and (2) splitting the training data into halves. For both tests the
changes in the mean multiplicative and additive corrections applied
to the SV data did not vary by more than 1%.

In §7.2, we mentioned that (S/N)
w

is a biased measure of

S/N with respect to shear, so if it is used to select a population of
galaxies, it will induce a selection bias on the mean shear. R

gp

/R

p

similarly induces such a bias. Thus, when we bin the shears by
these quantities to construct the calibration functions, there is a se-
lection bias induced in every bin. The scale of selection bias reaches
m ' �0.05 for the most populous bins. This is not a problem for
the correction scheme so long as the overall selection is also made
using these same quantities. In that case, the shear calibration au-
tomatically accounts for the selection bias in addition to the noise
bias.

We tried using (S/N)
r

in the calibration model rather than
(S/N)

w

to help reduce the level of the selection bias in each bin,
but we found that it does not perform as well as using the standard
(S/N)

w

. Perhaps not surprisingly, the noise bias seems to be more
related to the S/N of the actual galaxy than it is to the counterfac-
tual round version of the galaxy used for (S/N)

r

. In future work, it
would be interesting to seek an effective shear calibration scheme
that disentangles noise and selection biases, but we have not found
one yet.

We used these fits to estimate the multiplicative and addi-
tive corrections to use for every galaxy in the IM3SHAPE cata-
logue. However, it should be stressed that this bias estimate is it-
self a noisy quantity, being based on noisy estimates of the size
and S/N . Therefore one should not directly apply the correction to
each galaxy individually. Rather, the mean shear of an ensemble of
galaxies should be corrected by the mean shear bias correction of
that same ensemble (cf. §9.2).

Note that a selection bias can appear whenever a subset of
galaxies is selected from a larger sample. In the cosmological anal-
ysis, we apply recommended IM3SHAPE flags, cut on R

gp

/R

p

and
(S/N)

w

, and then typically split the galaxies into redshift bins.
The redshift selection in particular is not used in the shear calibra-
tion process, so it is possible for there to be uncorrected selection
biases in the different redshift bins. In §8.5, we test that the shear
calibration nevertheless performs well in this scenario by applying
the same selection procedure to the GREAT-DES simulation. There
we demonstrate that all biases are removed to the required tolerance
level in all redshift bins.
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What’s going on?

• Images seem easy; you have an intuition that getting an ‘ellipticity’ 
from a ‘galaxy’ should be simple 

• Analysis procedure seems ‘hard’, lots of details, thresholds, and 
nonlinear transformations. 

• “How would this image be different with more shear” is easier than 
“How would this measurement be different with more shear.”
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

We will construct counterfactual images.
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

I

0(x|g) = � ⇤
⇥
ŝg(P

�1 ⇤ I)
⇤

We will construct counterfactual images.

remove the PSF, shear, and add a new PSF
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

I

0(x|g) = � ⇤
⇥
ŝg(P

�1 ⇤ I)
⇤

We will construct counterfactual images.

we get to choose our final PSF
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg
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where we can write
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Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
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�1 ⇤ I
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. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

e+ = Ê
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.
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Noise in the original image Ĩ generally has power at
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operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is
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We wrapped Metacalibration around several 
measurement algorithms.
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Figure 1. Left: Normalized distribution of metacalibration shear responsivities from regaussianization, on the Control-Ground-Constant
branch of the GREAT3 simulations. Right: Distribution of metacalibration PSF ellipticity responsivities from regaussianization, on the
Control-Ground-Constant branch of the GREAT3 simulations. A vertical red dashed line is drawn for reference at the expected responsivity
for perfectly round objects, R = 2, in the left panel.

simulations (e.g., Mandelbaum et al. 2005, 2012, 2013,
2015).
The outputs of the re-Gaussianization algorithm are

PSF-corrected “distortions”, which for an object with
purely elliptical isophotes with minor-to-major axis ratio
q and position angle ✓ with respect to the x axis in pixel
coordinates are defined as

(e
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, e
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) =
1 � q

2

1 + q

2

(cos 2✓, sin 2✓) . (9)

As discussed in Bernstein & Jarvis (2002), the response
of a distribution of galaxies with some intrinsic distribu-
tion of distortions p(e) to a shear depends on the p(e)
itself. Conceptually, we can think of an ensemble shear
estimator using re-Gaussianization outputs as
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=
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i
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i/dg
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(10)

where the denominator gives the response of the ensem-
ble average distortion to a shear (often called the respon-
sivity). Estimators of this shear responsivity use the
observed galaxy p(e) and its moments, and for typical
p(e), the denominator is around 1.7–1.8 ⇡ 2(1 � e

2

RMS

)
in terms of the per-component RMS distortion. As this
implementation was meant to be a simple and fast ex-
ample, its intrinsic calibration correction is a simple one
that does not include all known systematics.

3.2.2. KSB

The KSB method (Kaiser et al. 1995) parametrises
galaxies and stars according to their weighted quadrupole
moments. The main assumption of the KSB method is
that the PSF can be described as a small but highly
anisotropic distortion convolved with a large circularly
symmetric function. With that assumption, the shear
can be recovered to first-order from the observed ellip-
ticity of each galaxy via

g = P
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sm
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sm⇤ e
⇤
◆
, (11)

where asterisks indicate quantities that should be mea-
sured from the PSF model at that galaxy position, P sm

is the smear polarisability (see Heymans et al. 2006 for
definitions) and P

g

is the correction to the shear polar-
isability that includes the smearing with the isotropic
component of the PSF. The ellipticities are constructed
from weighted quadrupole moments, and the other quan-
tities involve higher order moments. A circular Gaus-
sian weight of scale length r

g

is used, where r

g

is galaxy
size, as determined by the second moment of the surface-
brightness profile.
The KSB method returns a per-object estimate of the

shears (ĝ
1

, ĝ

2

). We can use metacalibration to remove
multiplicative and additive biases that come from aver-
aging the per-object KSB shear estimates.

3.2.3. Linear Moments

As mentioned previously, the third method we use does
not involve PSF-corrected galaxy shapes. Instead, we use
linear combinations of the second moments of galaxy im-
ages. The motivation behind this choice is as follows.
One way to estimate the distortion (e

1

, e

2

) is via combi-
nations of the second moments of the light profile,
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One source of noise (and noise bias) in traditional
moments-based methods is the division of two noisy
quantities in Eq. 14, typically followed by further division
by other noisy quantities to remove the dilution of the
galaxy shape by the PSF. Thus, as a final example of a
statistic that we will attempt to use as a calibrated shear
estimator with metacalibration, we define the following
linear combinations of moments:
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Figure 1. Left: Normalized distribution of metacalibration shear responsivities from regaussianization, on the Control-Ground-Constant
branch of the GREAT3 simulations. Right: Distribution of metacalibration PSF ellipticity responsivities from regaussianization, on the
Control-Ground-Constant branch of the GREAT3 simulations. A vertical red dashed line is drawn for reference at the expected responsivity
for perfectly round objects, R = 2, in the left panel.
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in terms of the per-component RMS distortion. As this
implementation was meant to be a simple and fast ex-
ample, its intrinsic calibration correction is a simple one
that does not include all known systematics.

3.2.2. KSB

The KSB method (Kaiser et al. 1995) parametrises
galaxies and stars according to their weighted quadrupole
moments. The main assumption of the KSB method is
that the PSF can be described as a small but highly
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component of the PSF. The ellipticities are constructed
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Figure 1. Left: Normalized distribution of metacalibration shear responsivities from regaussianization, on the Control-Ground-Constant
branch of the GREAT3 simulations. Right: Distribution of metacalibration PSF ellipticity responsivities from regaussianization, on the
Control-Ground-Constant branch of the GREAT3 simulations. A vertical red dashed line is drawn for reference at the expected responsivity
for perfectly round objects, R = 2, in the left panel.
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in terms of the per-component RMS distortion. As this
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that does not include all known systematics.
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moments. The main assumption of the KSB method is
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symmetric function. With that assumption, the shear
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size, as determined by the second moment of the surface-
brightness profile.
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quantities in Eq. 14, typically followed by further division
by other noisy quantities to remove the dilution of the
galaxy shape by the PSF. Thus, as a final example of a
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We ran many simulations, varying the complexity

• real galaxy morphology 
• heterogeneous PSF 
• increased noise 
• large optical aberrations 
• flawed measurement algorithms
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Where the algorithms are correctable,  
MetaCal calibrates them.



Parallel collaboration with Erin Sheldon: 
pushing Metacalibration’s limits8 Sheldon and Huff

Figure 1. Example simulated galaxy images. Each image is a composite of a bulge and disk, plus knots of star formation. The half light
radius is the same for all components, while the fraction of light in each component varies. In the upper left and upper right we show pure
bulge and pure disk models, respectively. In the lower left we show a disk with half the light in knots, and in the lower right we show a pure
“irregular” galaxy composed entirely of knots. Each model was convolved by a Moffat PSF and pixelized. For demonstration purposes, we
here show very large models to make the detailed structure visible; the galaxies used for our shear tests are typically much smaller than
the PSF (see figure 2).

BDK+ Simulations: 
Much larger simulation volume (5x109) 
Bulge+Disk+knots 
realistic size/flux distribution (COSMOS) 
stellar contamination 
full Dark Energy Survey PSF 
Large sub-threshold population (low S/N) 

Simplified Measurement: 
fit elliptical gaussian 
no PSF correction (!!!) 
reconvolve to symmetric PSF 
add noise to symmetrize



These simulations include large sub-threshold 
populations, so selection effects matter.

Practical Weak Lensing Shear Measurement with Metacalibration 9

Figure 2. Distribution of half-light-radius r50 in the parametric
simulations. The solid line represents the distribution of input r50,
drawn from fits to COSMOS data. The dashed line represents the
r50 for objects that passed the initial S/N > 5 pre-cut. The r50 of
the PSF is shown as the vertical dotted line.

Figure 3. Distribution of S/N in the parametric simulations.
The solid curve represents the true input distribution, the dashed
curve represents the objects that passed the initial cut on measured
S/N> 5. The measured S/N was biased and noisy, resulting in a
smooth selection on true S/N .

which galaxies were given a constant shear ranging from
0.01 to 0.08, with random orientations.
We implemented two important changes as compared

to GREAT3. First, we oriented the galaxies randomly,
whereas in GREAT3 the galaxies were placed in pairs
rotated by 90 degrees, in order cancel shape noise. Using
paired galaxies has the undesired effect of cancelling some
biases that we want to explore (Jarvis et al. 2015). Sec-
ond, we used optical aberrations in the PSF designed to
match that seen in the Dark Energy Survey data2. Sim-
ilar to GREAT3, we varied the aberrations as Gaussian
random variables around a fiducial value. These root-
mean-squared variations, in units of waves in the Noll
convention, are given in table 2. We used a Kolmogorov
model for the atmospheric component, such that the
overall mean FWHM ∼ 0.9 arcsec for 0.263 arcsec pixels.
Each galaxy was rendered onto a 48 by 48 pixel grid. For
this configuration there are significant variations in the

2 Aaron Roodman, private communication

Zernike Component RMS Variation
Defocus 0.13
Astigmatism in Y 0.13
Astigmatism in X 0.14
Coma in Y 0.06
Coma in X 0.06
Trefoil in Y 0.05
Trefoil in X 0.06
Spherical 0.03

Table 2

Root-mean-squared variation for the aberrations in
the optical model, in units of waves in the Noll
convention, derived from Dark Energy Survey data.

PSF ellipticity, but relatively little net ellipticity across
the entire simulation. The code used to generate these
simulations began as a fork of the GREAT3 public code
base, and is freely available online3.
In figure 6.2 we show the distribution of measured

S/N for the COSMOS simulations, as well as for the
Bulge+Disk+Knots simulation BDK. Also shown is the
distribution of the half-light-radius r50 for the two simu-
lations.
Note the galaxies used in the parametric sims presented

in §6.1 are much fainter and smaller than those used
in the RG simulation. Also note the RG simulation was
relatively expensive compared to the parametric simu-
lations, so we generated fewer galaxies and did not im-
plement any pre-selection. We thus do not expect the
real galaxy simulation to be more challenging than the
parametric simulation in every aspect. We include it
to directly test the robustness of metacalibration to
special properties of real galaxies that may not appear
in our Bulge+Disk+Knots simulation, and to test shear
recovery using a more realistic PSF.

7. MODEL FITTING AND METACALIBRATION
OPERATIONS

We fit the images with a single Gaussian model using
the ngmix code4. To perform the fit we used an im-
plementation of the “adaptive moments” algorithm orig-
inally presented in Bernstein & Jarvis (2002). We ap-
plied no PSF correction. We expected this estimator to
respond weakly to a shear, exhibit large model bias, noise
bias, and bias due to lack of PSF correction.
In order to correct for PSF anisotropy we reconvolved

by a symmetrized version of the PSF. We created this
PSF by adding the PSF image to itself, rotated by 90,
120, and 180 degrees. This averaging can result in a
Fourier space image that is larger in some dimensions
than the original, so we further shrunk the symmetrized
PSF in Fourier space. The shrink factor was taken to be
1 + 2 ∗ δ, where

δ =
E

T/2
(28)

Here E is the maximum eigenvalue from the covariance
matrix of the best-fit Gaussian. This we divide by half
the trace T , which is the mean extent of the object. For
a purely elliptical PSF, a factor of 1 + δ would be suf-
ficient; we conservatively increase the factor to 1 + 2δ

3 https://github.com/esheldon/egret
4 https://github.com/esheldon/ngmix
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Figure 2. Distribution of half-light-radius r50 in the parametric
simulations. The solid line represents the distribution of input r50,
drawn from fits to COSMOS data. The dashed line represents the
r50 for objects that passed the initial S/N > 5 pre-cut. The r50 of
the PSF is shown as the vertical dotted line.

Figure 3. Distribution of S/N in the parametric simulations.
The solid curve represents the true input distribution, the dashed
curve represents the objects that passed the initial cut on measured
S/N> 5. The measured S/N was biased and noisy, resulting in a
smooth selection on true S/N .

which galaxies were given a constant shear ranging from
0.01 to 0.08, with random orientations.
We implemented two important changes as compared

to GREAT3. First, we oriented the galaxies randomly,
whereas in GREAT3 the galaxies were placed in pairs
rotated by 90 degrees, in order cancel shape noise. Using
paired galaxies has the undesired effect of cancelling some
biases that we want to explore (Jarvis et al. 2015). Sec-
ond, we used optical aberrations in the PSF designed to
match that seen in the Dark Energy Survey data2. Sim-
ilar to GREAT3, we varied the aberrations as Gaussian
random variables around a fiducial value. These root-
mean-squared variations, in units of waves in the Noll
convention, are given in table 2. We used a Kolmogorov
model for the atmospheric component, such that the
overall mean FWHM ∼ 0.9 arcsec for 0.263 arcsec pixels.
Each galaxy was rendered onto a 48 by 48 pixel grid. For
this configuration there are significant variations in the

2 Aaron Roodman, private communication

Zernike Component RMS Variation
Defocus 0.13
Astigmatism in Y 0.13
Astigmatism in X 0.14
Coma in Y 0.06
Coma in X 0.06
Trefoil in Y 0.05
Trefoil in X 0.06
Spherical 0.03

Table 2

Root-mean-squared variation for the aberrations in
the optical model, in units of waves in the Noll
convention, derived from Dark Energy Survey data.

PSF ellipticity, but relatively little net ellipticity across
the entire simulation. The code used to generate these
simulations began as a fork of the GREAT3 public code
base, and is freely available online3.
In figure 6.2 we show the distribution of measured

S/N for the COSMOS simulations, as well as for the
Bulge+Disk+Knots simulation BDK. Also shown is the
distribution of the half-light-radius r50 for the two simu-
lations.
Note the galaxies used in the parametric sims presented

in §6.1 are much fainter and smaller than those used
in the RG simulation. Also note the RG simulation was
relatively expensive compared to the parametric simu-
lations, so we generated fewer galaxies and did not im-
plement any pre-selection. We thus do not expect the
real galaxy simulation to be more challenging than the
parametric simulation in every aspect. We include it
to directly test the robustness of metacalibration to
special properties of real galaxies that may not appear
in our Bulge+Disk+Knots simulation, and to test shear
recovery using a more realistic PSF.

7. MODEL FITTING AND METACALIBRATION
OPERATIONS

We fit the images with a single Gaussian model using
the ngmix code4. To perform the fit we used an im-
plementation of the “adaptive moments” algorithm orig-
inally presented in Bernstein & Jarvis (2002). We ap-
plied no PSF correction. We expected this estimator to
respond weakly to a shear, exhibit large model bias, noise
bias, and bias due to lack of PSF correction.
In order to correct for PSF anisotropy we reconvolved

by a symmetrized version of the PSF. We created this
PSF by adding the PSF image to itself, rotated by 90,
120, and 180 degrees. This averaging can result in a
Fourier space image that is larger in some dimensions
than the original, so we further shrunk the symmetrized
PSF in Fourier space. The shrink factor was taken to be
1 + 2 ∗ δ, where

δ =
E

T/2
(28)

Here E is the maximum eigenvalue from the covariance
matrix of the best-fit Gaussian. This we divide by half
the trace T , which is the mean extent of the object. For
a purely elliptical PSF, a factor of 1 + δ would be suf-
ficient; we conservatively increase the factor to 1 + 2δ

3 https://github.com/esheldon/egret
4 https://github.com/esheldon/ngmix

PSF (r50) S/N threshold
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Sim m c1 c2
[10−3] [10−5] [10−5]

RG 0.22± 0.58 2.6± 2.9 2.2± 2.9
BDK 0.03± 0.31 - −0.15± 0.62
BDK+Stars 0.01± 0.32 - −0.08± 0.63

Table 3

Metacalibration results for each image simulation
described in §6 and table 1. For each simulation, a cut was
placed at signal-to-noise ratio S/N> 10, and corrections
were applied for selection effects (see table 4 for more
results on selections). A single Gaussian was fit to the
observed object, with no PSF correction applied. No
multiplicative or additive bias was detected in any case.
Stellar contamination at the level of 10% increases the
noise in the recovered shear by ∼ 2− 3% but does not
introduce a significant bias.

8.2.1. Results with Selection Effects

In table 4, we show the results for different S/N thresh-
old cuts in the BDK simulations. We show the recovered
bias with and without corrections for selection effects.
These results are also shown graphically in figures 6 and
7. The cuts were all placed above the pre-selection at
S/N> 5, to guarantee the validity of the corrections.

Figure 6. Multiplicative (upper panel) and additive bias (lower
panel) in the BDK simulation after applying threshold selections in
S/N . The filled grey region represents the target accuracy.

We measured and corrected for a significant multiplica-
tive selection bias in each case. These biases are generally
well above our desired part in a thousand accuracy. After
correction, we found the multiplicative bias was less than
a part in a thousand in all cases. We did not find any
additive selection biases, which suggests our procedure
of reconvolving by a symmetrized PSF was sufficient for
these simulations.

8.2.2. Results with Stellar Contamination

Figure 7. Same as the top panel of figure 6, but now additionally
showing the multiplicative bias without corrections for selection
effects. The bias without correction for selection effects is repre-
sented as red diamonds. The bias after correction for selection
effects is represented as blue circles. The filled grey region repre-
sents the target accuracy.

Results including 10% stars in the BDK+Stars simula-
tion are shown in table 3. We did not detect any addi-
tional bias after including stars. The noise in the recov-
ered shear did, however, increase by ∼ 2− 3%.
Metacalibration is robust to stellar contamination

if the PSF is well characterized. Images consistent with
a PSF will not, in the mean, respond to the shear ap-
plied during the metacalibration process. Measure-
ment on stars also yields zero average shape, as long as
the PSF correction is sufficiently accurate: our use of
a symmetrized PSF (see §7) appears to be sufficient in
this case. In figure 5 we show the measured response R
for stars and galaxies. Indeed we see that, for stars, the
R is noisy but consistent with zero. Thus, in the mean,
stars contribute zero to both the estimator and response,
leaving equation 4 unbiased.
If the additional variance is tolerable, it may be useful

to include stars in a shear analysis if the PSF is suf-
ficiently well known. Attempting to remove faint stars
from a sample is a noisy procedure, likely to induce selec-
tion effects. These can be controlled using the corrections
derived in §3, but only if the selection is also repeated
based on quantities measured on sheared images, so the
corrections can be calculated. If the selection must be
performed outside of the metacalibration process, it
may be better to avoid it altogether.
For accurate interpretation of the signal, it is impor-

tant to weight by the metacalibration response terms
in order to get the correct redshift distribution( see §5
for more discussion of weighted means). It is also desir-
able that the redshift estimates for stars be close to zero,
so that the weighted redshift distribution is minimally
contaminated.

8.2.3. Effects of Missing Data

The Fourier transforms used to perform the meta-
calibration convolutions cannot accommodate missing
data. But in real data there are features in the image,
such as bad pixels and columns, and cosmic rays that
cannot be used for object measurement. This can be
dealt with easily when the galaxy model is fit simulta-
neously to postage stamps drawn from all available ob-
serving epochs and bands (e.g. Jarvis et al. 2016). If the

Selection effects are large,  
but now effectively mitigated.

There is no evidence  
for any remaining calibration bias.



Future problems



We will soon run out of universe 
for dark energy measurements.

you are here, now

5 Gly (z=0.5)

10 Gly (z=2)

13 Gly (z=8)

13.7 Gly (CMB)

dark energy 
becomes  important  
(mapped by ~2030)

It is unlikely that we will have solved 
everything by then.



If we cannot find more galaxies, 
we need more information per galaxy.



�⇥ = 0.2

Shear changes the orientation of an ellipse

But shear has no solid-body rotation component.



Lensing mis-aligns the kinematic and photometric axes
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With spectroscopic maps, this should be detectable.



Kinematics break degeneracy between shape and shear

face-on

image rotation curve

face-on, but
sheared

inclined, but
not sheared



Consider the Tully-Fisher relation.

Reyes et al 2011

Reyes et al 2011

Schlegel (private comm.)



With spectroscopy, the Tully-Fisher relation tells us
the inclination angle.

Blue points:
not corrected for 
inclination

Red trendline:
TF relation, which we 
treat as given

For a disk, sin(i) tells us what ellipticity we
should measure in the absence of lensing.

log [sin(i)]



Shear messes up the inclination correction.

Tully-Fisher:

For a disk: sin(i) =

✓
e

1 + e

◆ 1
2

The effect of a shear: e 7! e+ �

v
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= v
TF
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The reduction in shape noise can be very large…

…For face-on disks, factors of ~10.

normal shape noise



For this level of per-galaxy shape noise:

Shape noise: / �ep
ngal

For LSST: ngal ⇡ 25 gal arcmin�2

�e ⇡ 0.2

For kinematic lensing, equivalent shape noise with:

�e ⇡ 0.025

ngal ⇡ .25 gal arcmin�2



ngal ⇡ .25 gal arcmin�2

This is comparable to PFS or DESI.

⇠ 103 deg2

=) 107 spectra



A spectroscopic weak lensing measurement
with slit spectroscopy
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A spectroscopic weak lensing measurement
with slit spectroscopy
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Less rotation along the major axis than TFR would predict



A spectroscopic weak lensing measurement
with slit spectroscopy
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More rotation along the minor axis than TFR would predict



Simulating the measurement:
Slit Spectroscopy

Keck-DEIMOS

simple galsim-based 
simulation 

———————- 
consistent with 

DES/DESI exposure 
time calculations



But spatially resolved  
slit spectroscopy does not scale to wide-field surveys. 

We need hyperspectral imaging.



d

One possible solution:
Imaging Fabry-Perot Interferometer

transmission

wavelength

galaxy 1 galaxy 2



Example: GHASP survey data

Epinat et al. 2010

Epinat et al. 2010Epinat et al. 2010



j p l . n a s a . g o v

SPECTRE: A Fabry-Perot Imager concept

Massively Multiplexed Galaxy Kinematics from space

• square-degree FP imager 
• meter-class telescope with 

0.1” resolution 
• H-alpha kinematics to z<0.5 
• ~all-sky survey

57

• Kinematic Lensing 
• Peculiar Velocities 
• Resolved kinematics of star 

forming regions 

ScienceConcept



jp l .nasa.gov
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Shear response depends on unresolved modes

Band 
limit



γ

kx

ky

Shear response depends on unresolved modes



γ

kx

ky

Shear response depends on unresolved modes



γ

kx

ky

Convolve to larger PSF to ‘hide’ noisy modes



Reconvolution+shearing modifies the noise field.

We can mitigate by adding more noise, restoring 
symmetry.



Are there other useful ways to perturb the image?

We tried modifying the PSF. This could allow 
detrending of PSF correction errors.

I

0(x|e+PSF) = �+
⇥
P

�1 ⇤ I
⇤
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Figure 3. E↵ects of the metacalibration algorithm applied to PSF correction. Left panels show the relationship between measured shear
and PSF ellipticity before correction, and right panels show the same trends afterwards. Note that the shaded horizontal band covers the
same vertical range in each panel. Points rejected by our likelihood cut are shown with red boxes.
Simulation branch/algorithm pairs shown in order from top to bottom are RGC-regauss, CGC-KSB, and CGC-moments. The combination
of the metacalibration algorithm with our maximum-likelihood averaging procedure makes accurate corrections when the PSF ellipticities
are small or comparable to the magnitude of the shear signal. It is clear that a large fraction of the trend remaining after correction is
driven by remaining unmasked high-PSF-ellipticity outlier fields. While these were not rejected by our likelihood criterion, they would
typically not pass the image quality requirements in a realistic experiment.

5.3. Heterogeneous PSF

Large variations in the PSF properties can impact our
measurement algorithm via two channels: first, a het-
erogeneous PSF can result in individual fields deviating
from the zero-shear distribution constructed from the en-
semble of measured shapes, potentially biasing the his-
togram estimator; and second (as discussed above) via
the usual mechanism of incomplete PSF correction and
detrending.
Eliminating outlier fields in those branches with large

variations in the PSF via the rejection mechanism de-

scribed in section 3.5 tends to significantly improve the
calibration bias after metacalibration. The rejected fields
(red squares in Figure 3) tend to have substantially
larger residual shear calibration biases than the mean
field in each branch, and without the outlier rejection, we
see few-percent level calibration biases in each of these
branches. With the likelihood-based rejection mecha-
nism in place, the multiplicative and additive biases in
the CGC and RGC-regauss branches are consistent with
those in the CGC-noaber and RGC-noaber branches. It
should be noted that we arrived at the 10% cut by choos-
ing a level that typically eliminated outliers from the

PSF perturbation and detrending:

regauss:

KSB:



PSF perturbation and detrending:
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Figure 3. E↵ects of the metacalibration algorithm applied to PSF correction. Left panels show the relationship between measured shear
and PSF ellipticity before correction, and right panels show the same trends afterwards. Note that the shaded horizontal band covers the
same vertical range in each panel. Points rejected by our likelihood cut are shown with red boxes.
Simulation branch/algorithm pairs shown in order from top to bottom are RGC-regauss, CGC-KSB, and CGC-moments. The combination
of the metacalibration algorithm with our maximum-likelihood averaging procedure makes accurate corrections when the PSF ellipticities
are small or comparable to the magnitude of the shear signal. It is clear that a large fraction of the trend remaining after correction is
driven by remaining unmasked high-PSF-ellipticity outlier fields. While these were not rejected by our likelihood criterion, they would
typically not pass the image quality requirements in a realistic experiment.

5.3. Heterogeneous PSF

Large variations in the PSF properties can impact our
measurement algorithm via two channels: first, a het-
erogeneous PSF can result in individual fields deviating
from the zero-shear distribution constructed from the en-
semble of measured shapes, potentially biasing the his-
togram estimator; and second (as discussed above) via
the usual mechanism of incomplete PSF correction and
detrending.
Eliminating outlier fields in those branches with large

variations in the PSF via the rejection mechanism de-

scribed in section 3.5 tends to significantly improve the
calibration bias after metacalibration. The rejected fields
(red squares in Figure 3) tend to have substantially
larger residual shear calibration biases than the mean
field in each branch, and without the outlier rejection, we
see few-percent level calibration biases in each of these
branches. With the likelihood-based rejection mecha-
nism in place, the multiplicative and additive biases in
the CGC and RGC-regauss branches are consistent with
those in the CGC-noaber and RGC-noaber branches. It
should be noted that we arrived at the 10% cut by choos-
ing a level that typically eliminated outliers from the

moments:



PSF perturbation and detrending:



How to calibrate blends:



How to calibrate blends:

1. Don’t deblend.

(it’s really a photo-z problem)



Correcting for selection effects:

4 Sheldon and Huff

probability of selection after a positive or negative shear
is applied, respectively.

3.1. Response for the Mean Shear

Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =

∫
P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and

that galaxy orientations are random in the absence of
shear, the mean ellipticity can be rewritten, to leading
order, as

⟨e⟩ ≈

∫
de

∂P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγγ⟩, (8)

where we have ignored the perturbation of the normal-
ization

∫
deP (e), because it leads to terms that are sec-

ond order or higher in the shear. The mean shear is thus
weighted by a response matrix Rγ . This is the same 2×2
response matrix discussed in §2; we have added the sub-
script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:

⟨γ⟩ ≈ ⟨Rγ⟩
−1 ⟨e⟩ ≈ ⟨Rγ⟩

−1 ⟨Rγγ⟩ . (9)

We can calculate this mean response ⟨Rγ⟩ using quan-
tities measured on artifically sheared images, as discussed
in §2. We will approximate the derivatives using finite
differences in the shear, such that

⟨Rγ⟩ =

∫
∂P (e)e

∂γ

∣∣∣∣
γ=0

de ≈

∫
de

(
P+e+i − P−e−i

∆γj

)
de

=
⟨e+i ⟩ − ⟨e−i ⟩

∆γj
, (10)

where we switched to component notation, such that i, j
denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes

⟨e⟩S =

∫
S(e) P (e) e de. (11)

We will assume the
∫
deP (e)S(e) = 1, and continue to

ignore the higher order effect from changes in the normal-
ization under shear. Again, assuming a small shear, and
that galaxy orientations are random in the absence of
shear, the mean ellipticity after selection can be rewrit-
ten, to leading order, as

⟨e⟩ ≈

∫
de

∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγ⟩, (12)

Thus, the mean shear in the presence of selections is
also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using

quantities measured on artifically sheared images. It is
useful to examine separately the response of the estima-
tor e to a shear, and the response of selection effects to
a shear:

⟨R⟩ =

∫
∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

de

=

∫ [

S(e)
∂P (e)e

∂γ

∣∣∣∣
γ=0

+ P (e)e
∂S(e)

∂γ

∣∣∣∣
γ=0

]

de

(13)

Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,
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Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =
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P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and
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respect to the j-th shear component. In practice, this av-
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for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.
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Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
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ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
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Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
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We will again approximate the derivatives using finite
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where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:
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Apply a shear. 
See how your measured shapes change.
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estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as
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where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
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script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:
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where we switched to component notation, such that i, j
denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes
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∫
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We will assume the
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deP (e)S(e) = 1, and continue to
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also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using

quantities measured on artifically sheared images. It is
useful to examine separately the response of the estima-
tor e to a shear, and the response of selection effects to
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Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
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where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,
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estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =
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where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
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that galaxy orientations are random in the absence of
shear, the mean ellipticity can be rewritten, to leading
order, as

⟨e⟩ ≈

∫
de

∂P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγγ⟩, (8)

where we have ignored the perturbation of the normal-
ization

∫
deP (e), because it leads to terms that are sec-
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Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
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changes after it is sheared.
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second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:

1. The mean ellipticity measured from unsheared im-
ages, selecting on measurements from unsheared im-
ages. This is the mean shear estimator we wish to
calibrate.

4 Sheldon and Huff

probability of selection after a positive or negative shear
is applied, respectively.

3.1. Response for the Mean Shear

Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =

∫
P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and

that galaxy orientations are random in the absence of
shear, the mean ellipticity can be rewritten, to leading
order, as

⟨e⟩ ≈

∫
de

∂P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγγ⟩, (8)

where we have ignored the perturbation of the normal-
ization

∫
deP (e), because it leads to terms that are sec-

ond order or higher in the shear. The mean shear is thus
weighted by a response matrix Rγ . This is the same 2×2
response matrix discussed in §2; we have added the sub-
script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:

⟨γ⟩ ≈ ⟨Rγ⟩
−1 ⟨e⟩ ≈ ⟨Rγ⟩

−1 ⟨Rγγ⟩ . (9)

We can calculate this mean response ⟨Rγ⟩ using quan-
tities measured on artifically sheared images, as discussed
in §2. We will approximate the derivatives using finite
differences in the shear, such that

⟨Rγ⟩ =

∫
∂P (e)e

∂γ

∣∣∣∣
γ=0

de ≈

∫
de

(
P+e+i − P−e−i

∆γj

)
de

=
⟨e+i ⟩ − ⟨e−i ⟩

∆γj
, (10)

where we switched to component notation, such that i, j
denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
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After introducing a selection, the mean becomes
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Thus, the mean shear in the presence of selections is
also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using

quantities measured on artifically sheared images. It is
useful to examine separately the response of the estima-
tor e to a shear, and the response of selection effects to
a shear:

⟨R⟩ =

∫
∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

de

=

∫ [

S(e)
∂P (e)e

∂γ

∣∣∣∣
γ=0

+ P (e)e
∂S(e)

∂γ

∣∣∣∣
γ=0

]

de

(13)

Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:

1. The mean ellipticity measured from unsheared im-
ages, selecting on measurements from unsheared im-
ages. This is the mean shear estimator we wish to
calibrate.

Apply a shear. 
See which galaxies enter and leave your sample.
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Figure 4. Distribution of properties in the COSMOS real galaxy simulations. The left panel contains the distribution of measured S/N,
while the right panel contains the distribution of half-light-radius from the cosmos catalog for the input galaxies. For comparison, the
distributions for the Bulge+Disk+Knots BDK simulations are overplotted as dashed lines.

in case the Gaussian fit does not completely capture the
asymmetries of the true PSF.
All metacalibration image operations were per-

formed using the metacal module from ngmix, which in
turn uses GALSIM to perform most image manipulations.
We used the correction for correlated noise as discussed
in §4.1

8. RESULTS

In what follows we will characterize the bias using
the standard linear model (e.g. Mandelbaum et al. 2014)
with multiplicative part m and an additive part c, such
that

⟨γmeas⟩ = (1 +m)γtrue + c. (29)

For the BDK simulations, there was only one shear value
(0.02,0.00), and the PSF had ellipticity only in one com-
ponent (0.000, 0.025). We thus determined m from the
first component and c from the second. For the RG sim-
ulations, there were many different shears, so the linear
model above was fit. We found the multiplicative bias
was the same in each component, so we combined them
into a single value in the plots and tables below.
In all cases the measured S/N is based on the best fit

Gaussian model, using same definition implemented in
the GREAT3 simulations (Mandelbaum et al. 2014).

8.1. Metacalibration Responses

In figure 5 we show the measured metacalibration
responses for the BDK simulations. Also shown is the
response with the stars included in the BDK+Stars sim.
The distribution of R is quite symmetric in the absence
of stellar contamination5. We will discuss the affect of

5 We observed that forward modeling methods, in which the
model is convolved by the PSF, generally manifest an asymmetric
distribution of responses R. This however does not generally bias
the shear recovery.

stars in §8.2.2.

Figure 5. Distribution of metacalibration responses for galax-
ies and stars in the BDK+Stars simulation. Stars have mean re-
sponse close to zero, and thus do not bias the overall shear calibra-
tion.

8.2. Shear Recovery

In table 3 we show results for shear recovery in each of
our simulations. As was discussed in §6.1.2, we applied
a pre-selection to the BDK simulation at S/N> 5, which
imposes a selection bias. We thus placed cuts at higher
S/N than this threshold, so that the corrections for se-
lection effects presented in §3 could be used accurately.
In this table we show results for S/N> 10. For the RG
simulation we did not apply a pre-selection.
Using metacalibration we found no significant mul-

tiplicative or additive biases. Without applying the
metacalibration responses, the multiplicative bias m
was of order 50% for all simulations.

Imperfect star-galaxy separation does not appear 
to bias the inference.
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Figure 6. Constraints on f�
8

(upper panel) and � (lower panel)
as a function of galaxy number density (n̄ = ng = nu). See Fig. 4
for the description of lines. The short-dashed lines are results from
two fields using linear theory; the 1-loop renormalised perturba-
tion theory is used for other lines. Constraints on � from two
fields continue to decrease, while the constraint from RSD only is
limited by cosmic variance.

3.2.4 Free cosmological parameters

Finally, we vary cosmological parameters, cold dark matter
density ⌦ch

2, baryon density ⌦bh
2, Hubble constant h, and

spectral index ns in addition to f�
8

and �. We take the
derivative with respect to cosmological parameters numeri-
cally by generating power spectra with cosmological param-
eters changed by ±1 per cent,

@P

@✓i
⇡ P (✓i +�✓i)� P (✓i ��✓i)

2�✓i
, (21)

where �✓i = 0.01✓i. The constraint on � is una↵ected, be-
cause the relation between �g and u only depends on �, not
on other cosmological parameters in the linear order. The
constraint on f�

8

weakens from 1.8 to 2.2 per cent.
Since cosmological parameters are well constrained by

the cosmic microwave background (CMB), we add the prior
expected from the Planck observation (Planck Collaboration
et al. 2013). We use the forecast for the full Planck mission
by Perotto et al. (2006); we calculate the covariance matrix
of ⌦ch

2, ⌦bh
2, h and ns, marginalised over the other pa-

rameters, using their publicly available Markov chain Monte
Carlo data.4 We add the inverse of the covariance matrix to
the Fisher matrix as an independent prior from Planck. We
do not add a prior on f or �

8

from the CMB, because model-
dependent extrapolation to z = 0 is necessary for such con-
straints. The Planck priors marginalised for each parameter
are �⌦bh

2 = 0.00022, �⌦ch
2 = 0.0024, �h = 0.017, and

�ns = 0.0074.

4

lesgourg.web.cern.ch/lesgourg/codes/chains 0606227.html

After adding the Planck prior, the constraints on f�
8

and � recover the 2-parameter constraint. We also vary all 9
parameters, ✓ = (f�

8

,�, rg,�g,�u,⌦ch
2,⌦bh

2, h, ns), with
the Planck prior. The result is same as the 4-parameter
constraint with f�

8

, �, �g, and �u. With the precise mea-
surement from the CMB, the shape of the power spectrum
is no longer a source of uncertainty in the growth rate.

We have presented the results of the two-field Fisher
matrix analysis for galaxy density and peculiar velocity,
comparing with those for a single field with density or veloc-
ity only. Peculiar velocity measurements improve the mea-
surements for more than a factor of 2 compared to density
alone for n̄ = 10�2 (h�1Mpc)�3, and improve even more as
we increase the number density, without the cosmic variance
limit. The nonlinear power spectrum with RPT does not al-
ter the Fisher matrix results significantly compared to the
linear power spectrum. The uncertainty in the redshift-space
damping parameters, �g and �u, degrade the constraints by
20�30 per cent, which can be improved by future theoretical
work.

4 FORECASTING FUTURE PECULIAR
VELOCITY SURVEYS

We apply our Fisher matrix of galaxy density and peculiar
velocity to existing and future peculiar velocity surveys. In
Section 4.1, we first review the measurements from the ex-
isting 6dF Galaxy Survey, and the Fisher matrix forecast by
BT04 for the 6dF survey, and compare them with our calcu-
lations. We then present the forecasts for the future surveys
in Sections 4.2–4.3. We use distance-dependent galaxy num-
bers, galaxy bias b, and sky coverage ⌦

sky

expected for each
of the surveys, which we describe in the following sections.
Other parameters in the Fisher matrix are the same as those
in Section 3.2. In Fig. 7, we plot the expected galaxy num-
ber densities with redshift measurement, ng, and with ad-
ditional peculiar velocity measurement, nu. We summarise
the results in Table 3.

4.1 6dF Galaxy Survey

The 6dF Galaxy Survey (6dFGS) is a low redshift survey
of early type galaxies out to z . 0.15, covering 17 046 deg2

in the southern sky, and containing 136 304 redshifts (Jones
et al. 2004, 2009). The velocity subsample (6dFGSv) con-
tains 8896 galaxies in the redshift range z 6 0.05, with pe-
culiar velocities measured through the Fundamental Plane
relation (Magoulas et al. 2012). The redshift survey mea-
sured the growth rate through the redshift-space distortions
with 13 per cent precision at e↵ective redshift of 0.067 (Beut-
ler et al. 2012, f�

8

= 0.423 ± 0.053). Their Fisher matrix
calculation gives constraints on f�

8

of 23 per cent for k
max

=
0.1hMpc�1, and 8.3 per cent for k

max

= 0.2hMpc�1, consis-
tent with their actual analysis (all values for wavenumbers k
are in units of hMpc�1, hereafter). The velocity subsample
combined with the reconstructed velocity field from a full-
sky density field measures � with about 25 per cent precision
(Magoulas et al. in preparation).

In order to determine the redshift distribution of galax-
ies, we use 125 random mocks of the 6dFGS velocity sub-
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