The Maunakea Spectroscopic Explorer

- Jennifer Marshall
- MSE Project Scientist
- Texas A\&M University

The Maunakea Spectroscopic Explorer

Facility transformation

- CFHT has a 40 year history of scientific and outreach leadership on Maunakea
- Out of environmental and cultural respect, a strong desire to preserve the external appearance of CFHT after MSE completion
- MSE will reuse the CFHT summit building without additional ground disturbances
- Limiting size increase of the new facility building and enclosure to 10\%

Facility transformation

Facility transformation

Conceptual Design

- 11.25 m diameter telescope
- 1.5 square degree field of view
- 4,332 fiber positioner feed two sets of spectrographs
- Low resolution: R~3000 / UV to H band / 3249 positioners
- High resolution: R=40000 / three windows in optical / 1083 positions
- Completely dedicated survey facility

Conceptual Design by AAO (Australiar Astronomical Observatory) Macquarie -Sphinx design (based on FMOS/Echid -Hexagonal field of view
-4,332 piezo actuator positioners -57 modules/76 positioners each
(57 LMR/19 HR)
Allows simultaneous
HR and LMR coverage

Fiber Positioner System

Individual actuators position fibers precisely on sky targets.

- Closed loop with its own metrology, accuracy 0.06 arcsec rms ($\sim 6 \mathrm{um}$)
- Patrol radius $90.3 \operatorname{arcsec}(\sim 9 \mathrm{~mm})$
- Two fibers: closest approach 7 arcsec
- Three fibers: cluster within 9.9 arcsec circle
- Reconfigu

Fiber Transmission System

Conceptual Design by NRC-HAA (Herzberg Astronomy and Astrophysics), Canada

- Continuous fiber end-to-end without connectors
- High Numerical Aperture fibers (0.75" HR, 1.0" LMR)
- No input microlens optics
- High stability and repeatability
- End to end test bench being developed in Canada at University of Victoria

LMR Spectrographs

Conceptual Design by CRAL (Centre de Recherche Astrophysique de Lyon), France

Low resolution (LR) spectroscopy				
Wavelength range	$360 \leq \lambda \leq 560 \mathrm{~nm}$	$540 \leq \lambda \leq 740 \mathrm{~nm}$	$715 \leq \mathrm{X} \leq 985 \mathrm{~nm}$	$960 \leq \mathrm{X} \leq 1320 \mathrm{~nm}$
Spectral resolution (approx. at center of band)	2,550	3,650	3,600	3,600
Sensitivity requirement (pt. source, 1 hr , zenith, median seeing, monochromatic magnitude)	$\begin{gathered} \mathrm{m}=24.0 \\ S N R / \text { res. elem. }=2, \lambda>400 \mathrm{~nm} \\ S N R / \text { res. elem. }=1 . \lambda \leq 400 \mathrm{~nm} \end{gathered}$	$\mathrm{m}=24.0$ $\mathrm{SNR} /$ resolution element $=2$	$\mathrm{m}=24.0$ $S N R /$ resolution element $=2$	$\mathrm{m}=24.0$ SNR/resolution element $=2$
Moderate resolution (MR) spectroscopy				
Wavelength range	$391 \leq \mathrm{X} \leq 510 \mathrm{~nm}$	$576 \leq \mathrm{\lambda} \leq 700 \mathrm{~nm}$	$737 \leq \mathrm{X} \leq 900 \mathrm{~nm}$	$1457 \leq \lambda \leq 1780 \mathrm{~nm}$
Spectral resolution (approx. at center of band)	4,400	6,200	6,100	6,000
Sensitivity requirement (pt. source, 1 hr , zenith, median seeing. monochromatic magnitude)	$\begin{gathered} \mathrm{m}=23.5 \\ \text { SNR/res. elem. }=2, \lambda>400 \mathrm{~nm} \\ \text { SNR/res. elem }=1, \lambda \leq 400 \mathrm{~nm} \end{gathered}$	$\begin{gathered} \mathrm{m}=23.5 \\ \text { SNR/resolution element }=2 \end{gathered}$	$\begin{gathered} \mathrm{m}=23.5 \\ \mathrm{SNR} / \text { resolution element }=2 \end{gathered}$	$\begin{gathered} \mathrm{m}=24.0 \\ \text { SNR/resolution element }=2 \end{gathered}$

Modes:

- Optical LR + J-band LR
- Optical MR + H-band LR
- All arms of all spectrographs are independently controlled. Possibility of simultaneous LR/MR on different targets in same observing field.

LMR Spectrographs

Conceptual Design by CRAL (Centre de Recherche Astrophysique de Lyon), France

H-band use requires cooled slit, hence cooled optical arms (210K)
Camera design is $\mathrm{f} / 1.2$, transmissive. Good throughput and unobstructed pupil.
Challenging to build -strong aspheres/glued doublets, tight alignment specs. Some options:

- Catadioptric design
- Shrink the fiber size
- Curved CCDs (but not NIR)

HR Spectrographs

Conceptual Design by NIAOT (Nanjing Institute of Astronomical Optics \& Technology)

Two identical spectrographs:

- accept 1083 (0.8" diameter) fibers, from full field of view, divided evenly
- 3x optical arms (360-950), in three spectral channels (blue green and red), a.k.a. wavelength windows
Blue (401-417nm), R=40k, $\lambda / 30$
Green (471-489nm), R=40k, $\lambda / 30$
Red (625-674nm), R=20k, $\lambda / 15$
- Off-axis f/2.05 collimator

High resolution (HR) spectroscopy

High resolution (HR) spectroscopy			
Wavelength range	$360 \leq \pi \leq 460 \mathrm{~nm}$	$440 \leq \lambda \leq 620 \mathrm{~nm}$	$600 \leq \mathrm{x} \leq 900 \mathrm{~nm}$
Wavelength band	$\lambda / 30$ [baseline: $401.0-415.0 \mathrm{~nm}$]	$\begin{gathered} \lambda / 30 \\ \text { [baseline: } 472.0=488.5 \mathrm{~nm} \text {] } \end{gathered}$	$\lambda / 15$ [baseline: $626.5-672.0 \mathrm{~nm}$]
Spectral resolution (approx. at center of band)	40,000	40,000	20,000
Sensitivity requirement (pt. source, 1hr, zenith, median seeing, monochromatic magnitude)	$\begin{aligned} & \mathrm{m}=20.0 \\ & \text { SNR/resolution element }=10, \lambda>400 \mathrm{~nm} \\ & \text { SNR } / \text { resolution element }=5, \lambda \leq 400 \mathrm{~nm} \end{aligned}$	$\begin{gathered} \mathrm{m}=20.0 \\ \text { SNR/resolution element }=10 \end{gathered}$	$\begin{gathered} \mathrm{m}=20.0 \\ \mathrm{SNR} / \text { resolution element }=10 \end{gathered}$

Preliminary Design Phase

Growth of Science Team

- Huge response to March 2018 call for Science Team Membership!
- Currently 372 members from 36 countries:

Maunakea Spectroscopic Explorer

- Australia* -30
- Belgium - 7
- Canada* - 38
- Chile-7
- China* - 32
- France* -38
- Germany - 18
* Current MSE participants
- India* - 11
- Italy - 12
- Spain - 14
- United Kingdom - 31
- USA - 93
- Brazil - 1
- Other - 130
ORGANIZATION

SCIENCE
NEWS
DOCUMENTS
Call for Maunakea Spectroscopic Explorer Science Team Membership

Call for Maunakea Spectroscopic Explorer Science Team Membership

- Over the past few months the Science Team has worked hard to update the MSE Detailed Science Case:

Contents

Preface to Version 2 of the Detailed Science Case, 2019
vii
Preface to Version 1 of the Detailed Science Case, 2016
ix
1 Executive Summary 1

2 The Scientific Landscape of the Maunakea Spectroscopic Explorer

3
2.1 The Composition and Dynamies of the Fimt Universe. 4
2.2 MSE and the international network of astronomical facilities 10
2.2.1 Optical imaging of the Universe . 12
2.2.2 Infrared imaging from space . 14
2.2.3 Multi-messenger and time domain astronony 14
2.2.4 The era of Gaia . 15
2.2.5 Synergies at loug wavelengths . 18

- Nearly 300 pages!
- Over 100 active contributors
- Builds upon original MSE Detailed Science Case (2016)

Science Working Groups

Exoplanets and stellar astrophysics
Maria Bergemann \& Daniel Huber
Chemical nucleosynthesis
Sivarani Thirupathi \& David Yong

${ }_{23}$	$\underset{24}{\mathrm{Cr}}$	$\underset{25}{\mathrm{Mn}}$	$\begin{aligned} & \mathrm{Fe} \\ & 26 \end{aligned}$	$\underset{27}{\mathrm{Co}}$	$\underset{28}{\mathrm{Ni}}$	$\underset{\text { co }}{\mathrm{Cu}}$	${ }_{30}$	Ga	Ge
Nb	Mo	Tc	Ru	Rh	Pd		Cd		
	M	To	Ru	R	Pa	Ag	Ca		

Milky Way and resolved stellar pops
Carine Babusiaux \& Sarah Martell
Galaxy Formation and evolution
Kim-Vy Tran \& Aaron Robotham

AGN and supermassive black holes
Yue Shen \& Sara Ellison
Astrophysical tests of dark matter Ting Li \& Manoj Kaplinghat

Cosmology
Will Percival \& Christophe Yeche
Time domain astronomy and transients Adam Burgasser \& Daryl Haggard

NOAO/Tucson, 26-28 February 2019

MSE science highlights

Origins of the elements

- MSE's high resolution spectrographs will be able to measure r-process element abundances in an unprecedented number of stars, providing the final piece of direct observational evidence of the origins of every element on the Periodic Table

The Origin of the Solar System Elements

- Detailed chemical abundance patterns of stars in Ret II show high levels of rapid neutron-capture element enhancement (r-II)

Ji+2016; scaled solar r-process (purple) and s-process (yellow) patterns are shown

- Suggested explanation is a binary neutron star merger early in this small galaxy polluted the entire population of stars
- Evidence of tidal tails suggest disruption as Tuc III merged with Milky Way
- Provide constraints on Galactic potential, LMC mass/influence (Li+2018, Erkal+2018)

Drlica-Wagner+2015

Marshall, Hansen+submitted

The second r-process enhanced galaxy: Tucana III

All five Tuc III members are r-I stars

- One star has some s-process as well

Grey lines define r-l stars; purple circles are Ret II stars; blue points are stars

Solid: scaled solar r-process; dashed: scaled solar \boldsymbol{s} process
Hansen+2017; Marshall, Hansen+submitted

MSE science highlights

Origins of the elements

- MSE's high resolution spectrographs will be able to measure r-process element abundances in an unprecedented number of stars, providing the final piece of direct observational evidence of the origins of every element on the Periodic Table

The Origin of the Solar System Elements

MSE science highlights

Probing the particle nature of dark matter

- By measuring kinematics of stars in the Milky Way and dwarf galaxies, MSE will be able discriminate between different dark matter particles

MSE Detailed Science Case 2019

Densitey proilles for dark maiter halos having virial masses in the range expected for dwarf galaxies. Figure from Read et al. 2018

Left: Simulated observations of a $10^{7} \mathrm{M}_{\text {。 }}$ subhalo impact adapted from Erkal \& Belokurov 2015. Right: Gap in a simulated GD-1-Iike stream from a $\mathbf{1 0}^{6} \mathrm{M}_{\text {o }}$ subhalo. Both are readilv detectable hv MSF.

MSE science highlights

Probing the particle nature of dark matter

- By measuring kinematics of stars in the Milky Way and dwarf galaxies, MSE will be able discriminate between different dark matter particles

MSE is the only planned spectroscopic survey that will be able to study the faintest objects discovered by LSST at high and low resolution
MSE Detailed Science Case 2019

MSE science highlights

- MSE will enable one of the largest and highest redshift galaxy surveys possible, by number and by volume

Recent galaxy redshift surveys as a function of their area and redshift range, compared with the proposed MSE survey. The thickness of each bar is proportional to the total number of galaxies. Note the transition from logarithmic to linear scale on the x axis at 5000 sq. deg.

MSE Detailed Science Case 2019

MSE science highlights

Neutrino mass

- The proposed MSE cosmological largevolume survey of high-redshift galaxies can measure the combined mass of the neutrino better than any other project
- When combined with DESI+CMB(S4), a 5-

Primordial non-Gaussianity

- Probe physics of inflation
- Survey covers 10,000 square degrees; enormous volume of $280 \mathrm{Gpc}^{3}$ out to $\mathrm{z} \sim 4$
- Countless more science applications

MSE Detailed Science Case 2019

Timeline to Science Operations

Science Commissioning will begin in 2029

- Based on a technically paced schedule with no constraints on resources and cash flow

The project timeline is organized in four major overlapping phases with three milestones:

- Preliminary Design Phase - 2 yrs
- Construction Phase - 6.5 yrs duration
- System-Level Assembly, Integration and Verification (AIV) Phase - 5.5 yrs
- Science Commissioning - 2 yrs

Received Construction Permit from the State
Eonstruction Phase start approved
Received New Master Lease

Join the Science Team!

- Send an email to mseinfo@mse.cfht.hawaii.edu or marshall@mse.cfht.hawaii.edu

Maunakea Spectroscopic Explorer
ORGANIZATION SCIENCE NEWS DOCUMENTS
Call for Maunakea Spectroscopic Explorer Science Team Membership
A major science development phase will get underway in April/May 2018, that will be spearheaded by the international
science team. Specifically, they will develop the first phase of the MSE Design Reference Survey (DRS). The DRS is
planned as a year observing campaign that will demonstrate the science impact of MSE in a broad range of science
areas and will provide an excellent dataset for community science. It will describe and simulate an executable survey plan
that addresses the key science described in the Detailed Science Case. The DRS will naturally undergo several iterations
between now and first light of MSE: this first phase (nicknamed DRS1) will set the foundation for its future development.
DRS1 will be supported by the Project Office and will use various simulation tools, including Integration Time Calculators,
fiber-assigning software, and a telescope scheduler. It is anticipated that the DRS will become the first observing program
on MSE come first light of the facility, and it will be used by the Project Office going forward to understand the
consequences for science for all decisions relating to the engineering and operational development of MSE.

Thank you!

The Maunakea Spectroscopic Explorer (MSE) conceptual design phase was conducted by the MSE Project Office, which is hosted by the Canada-France-Hawaii Telescope (CFHT). MSE partner organizations in Canada, France, Hawaii, Australia, China, India, and Spain all contributed to the conceptual design. The authors and the MSE collaboration recognize the cultural importance of the summit of Maunakea to a broad cross section of the Native Hawaiian community.

