
Pipelines & Workflow in 
LSST-DESC

Joe Zuntz

Overview

• LSST & DESC

• 3x2pt

• Pipelines

LSST

LSST
• Large Synoptic Survey Telescope

• 8.4m mirror 
3.2 Gpix camera 
10 year main survey 
37B sources 
0.5 Exabytes total 
3.5 degree field of view 
6 colours 
18,000 sq. deg survey

• Under construction in Cerro Panchon,
Chile

• Can image the entire sky every 3 days

• First science light 2021

LSST Science• Transients

• 90% of solar system objects >140m

• 106 asteroids, 104 objects beyond Neptune

• 10M alerts/night within 1 minute of a changed object

• Milky Way

• 1010 Main Sequence stars to 100 kpc

• Milky Way Survey volume ~1000 greater than previous surveys

• Cosmology

• ~109 weak lensed galaxies, ~106 Supernovae,  
104 galaxy-galaxy strong lenses,

LSST Construction Status

Parts of LSST: 
The Project

• Builds & operates the telescope!

• Data Management group (DM)  
Runs Level 1 and Level 2 processing

• Level 1: prompt data products, such as transients and
difference images

• Level 2: Annual releases of calibrated exposure and co-
added images, catalogs of sources

• Building DM Stack software framework to run analyses at scale

• See https://pipelines.lsst.io/

https://pipelines.lsst.io/

Parts of LSST:
Collaborations

• Science analyses done in the collaborations

• Largest is cosmology group, the  
Dark Energy Science Collaboration, DESC

• DESC has some of the biggest workflow
issues, since it needs to correlate the sky
on large scales

• Current DESC activity focused on Data
Challenges - simulations of images and
catalogs.

Project/Collaboration
Interface

• Collaborations must test DM code

• DM implements and absorbs algorithms from
collaborations as needed

• e.g. lensing science requires galaxy shapes - DM is
ingesting algorithms to do this from DESC

LSST Pipelines
• Different parts of LSST use pipelines differently

• Project

• Runs a single unified large pipeline

• Runs on nightly data and for annual releases

• Mainly image analysis, in parallel

• DESC

• Run more varied science pipelines

• Repeated more often, for different science analyses

3x2pt

Case Study:
3x2pt Cosmology

• 3x2pt is a key science goal of
LSST - most powerful dark
energy constraints

• Combined lensing and galaxy
clustering measurements

• Successfully measured by
current DES and KiDS surveys

• A prototype case for our
pipeline development

DES Y1 3x2pt Data

Two-Point Correlations
• Measures correlation in a field at different separations

• �

• Real space easy to understand

• Fourier space f also very useful

• In photometric surveys like LSST we mainly 
 consider 2D fields

• Remember that the sky is a sphere!

• In a purely Gaussian field, 2pt correlations describe all the available
information

⟨ f(x) ⋅ f(x + r)⟩x

r
dr

3 x 2pt
Correlations

• w(θ) 
Galaxy density correlation function

• ξ+(θ), ξ-(θ) 
Shear correlation functions

• 𝛄t(θ) 
Shear around lens galaxies  

θ

θ

θ

Systematics & Complementarity
• Shear - any galaxies

• Sensitive to intrinsic alignments of
galaxies & photometric redshift errors

• Density - luminous red galaxies

• Amplitude has unknown galaxy bias

• Smaller redshift errors

• Cross

• Sensitive to both bias and IA

3x2pt Science
• 3x2pt measures:

• cosmic structure
amplitude

• growth

• redshift-distance relation

• Cosmological parameters
�Ωm, σ8, w(z)

DES Y1 3x2pt Constraints

S 8
=

σ 8
⋅ (

Ω
m

/0
.3

)0.
5

Pipelines

3x2pt Pipelines
• Many different analysis stages

between catalog and
cosmology

• Each stage is research  
problem in itself

• Most are also HPC  
problems

• Collecting & combining into a
coherent pipeline is a key
infrastructure challenge

• Traditional approach is
somewhat incoherent

•

3x2pt Pipeline Goals
• Automation!

• Traditional approach to workflow 
is humans + emails

• Collect together the processes that go from DM
catalogs to MCMC samplers

• Run easily at DESC HPC Facilities

• Be testable at small scales on a laptop

• Use & provide streaming and parallel algorithms and
tools

• Separate workflow from the scientific logic

• Easy debugging and development 

Workflow Tools Overview
• Various Workflow Management Frameworks exist

• Manage launching jobs, dependency on previous jobs, data transfer,

• Especially important when multiple computational systems are used
for different pieces of analysis, e.g. grid + cluster

• Though most of these are *not* designed for shared HPC!

• Might be viable for cosmology on other types of system

Some Workflow
Frameworks

RADICAL-Pilot Pinball

Airflow

Project Workflow

• Project conducted a survey of
workflow systems: 
https://dmtn-025.lsst.io/

• Planning on using Pegasus
workflow

• Experiments underway

• Building on existing task-
running infrastructure

https://project.lsst.org/meetings/lsst2017/sites/lsst.org.meetings.lsst2017/files/dm_stack_pegasus_chiang.pdf

https://dmtn-025.lsst.io/
https://project.lsst.org/meetings/lsst2017/sites/lsst.org.meetings.lsst2017/files/dm_stack_pegasus_chiang.pdf

Pegasus
• https://pegasus.isi.edu

• Experimented with this in
DESC, + Project usage

• Powerful features!

• Fault tolerance

• Multi-site

• Monitoring UI

• Failure re-try

• Remote file handling

• Provenance tracking

https://pegasus.isi.edu

Pegasus Description

• Text files describe
components:

• Replica catalog (input
files)

• Transformation catalog
(executables)

• Site catalog (computers)

data1.txt file:///home/joe/data1.txt site="local"
data2.txt http://example.org/data2.txt site="example"

tr task1 {
 site condorpool {
 pfn “/usr/bin/task1.exe"
 arch "x86_64"
 os "MACOSX"
 type "INSTALLED"
 }
}

…
<site handle="local" arch="x86_64" os=“MACOSX">
...

Pegasus Job Description

• Python library for generating workflows:

Pegasus

• Verbose / heavy duty!

• Not suited to testing on personal machines - requires an
HTCondor installation

• This was a major killer for me - dramatically reduces
ability to test at smaller scale

Parsl
• parsl.readthedocs.io

• External project

• Authors now DESC members, working closely

• Models pipeline stages as python functions or bash strings
and examines their inputs and outputs

• Execution library knows about submission to various job
managers and systems

• Dramatically less boilerplate than Pegasus

https://parsl.readthedocs.io/

Parsl Example

Ceci• Wanted to impose more structure on
pipelines than Parsl’s function
structure allowed

• Wanted pipelines to clearly
express their inputs, outputs,
and config in a list and then
use these to connect stages

• Also easier to run individual
stages and to debug them

• Wrote a wrapper around Parsl, ceci

• Class to automate connecting a job
to a wider pipeline - hide Parsl from
users

• Targeted at relatively simple pipelines
with clear connections

• This was targeted specifically at DESC
pipeline problems, not a more general
solution

Ceci Pipeline Stage

Common Workflow
Language

• A standard is developing for
workflow languages, CWL

• Could be useful for future
workflows

• Verbose but flexible, understands
containers

• Not the time to adopt
wholeheartedly, but definitely
worth keeping an eye on

Recommendations
• Understand distinction between different kinds of pipeline

- be clear on target use case, consider different engines
for different pieces

• There is clear value to workflow management, especially
for distributed collaborations

• Don’t require your users to write pegasus/parsl/other
directly - have a thin interface layer for your system

• Maintain workflow-agnostic component design

