
Parsl: A Parallel Scripting Library for

Python

Kyle Chard (chard@uchicago.edu)
Yadu Babuji, Mike Wilde, Dan Katz, Anna Woodard, Justin Wozniak, Ian Foster

http://parsl-project.org

mailto:chard@uchicago.edu

22

When do you need automated workflow?
Example application: protein-ligand docking for drug screening

(B)

O(100K)
drug

candidates

…then hundreds of
detailed MD

models to find
10-20 fruitful
candidates for
wetlab & APS

crystallography

O(10) proteins
implicated in a disease

= 1M
docking
tasks…

X

…

33

When do you need automated Workflow in

machine learning?
Example application: predicting material design

Train/Validate Predict

f(x)

…
O(Ms) of data
used to train
model

O(2M)
evaluation
of possible
designs

preprocess
predict

f(x)

44

When do you need automated workflow in

online experiments?
Example application: cement hardening experiments

Tekin Bicer et al., eScience 2017

O(Ms) of images per day
(2,000 projections per
second. 2,048 x 2,048 pixels)

55

When do you need automated workflow in

interactive science?
Example application: QuarkNet cosmic ray eLab

O(1M) cosmic ray events

Collect

Data

Curate

Analyze

Identify

shower

candidates

Detector Detector

66

Workflow requirements

 Usability and ease of workflow expression

 Ability to leverage complex architecture of HPC and HTC systems
(fabric, scheduler, hybrid node/programming models), individually
and collectively

 Ability to integrate high-performance data services and volumes

 Make use of the system task rate capabilities from clusters to
extreme-scale

 Parsl: A Python programming library for programming at any
scale

77

Expressing a many task workflow in Parsl

1) Wrap the protein docking code:

@App('bash', dfk)

def dock(p, c, minRad, maxRad)

return 'dock.sh {0} {1} {2} {3}'.format(p,

c ,minRad, maxRad)

88

Expressing a many task workflow in Parsl

2) Execute the protein docking workflow:

for p in proteins:

for c in ligands:

structure[p][c] =

dock(p, c, minRad, maxRad)

scatter_plot = analyze(structure)

99

The Swift parallel scripting language

 10+ years of development

 C-like language with implicit
parallelism

 Applied in dozens of
scientific domains

 Data management, multi-
site execution, coasters, etc.

 We are leveraging lessons
and components to build
Parsl

1010

Large-scale applications using Swift

 Simulation of super-
cooled glass materials

 Protein and biomolecule
structure and interaction

 Climate model analysis and
decision making for global
food production & supply

 Materials science at the
Advanced Photon Source

 Multiscale subsurface
flow modeling

 Modeling of power grid
for OE applications

All have published science
results obtained using Swift

E

C

A

B

A

B

C

D

E

F
F

D

1111

Pervasively parallel

 Parsl is a parallel scripting system for grids, clouds and clusters

 F() and G() are computed in parallel

– Can be Python functions, or leaf tasks (command line executables or scripts in
shell, python, R, Octave, MATLAB, ...)

 App parallelism is automatic

 Works recursively throughout the program’s call graph

def my_function(f,g):

return f + g

f = F(i)

g = G(i)

my_function(f,g)

F G

my_function

f g

1212

Dynamic dataflow execution

Parsl

Parsl host: login node, laptop, …

Data servers

mark
Apps

Scripts

for i, raw in raw_files:

land[i] = land_use(raw)

colors[i] = colorize(raw)

r = analyze(l_type)

1313

Parsl is Python

 Use Python libraries
natively

 Stage Python data
transparently

 Integrates with
Python ecosystem

pip3 install parsl

1414

Interactive supercomputing with Jupyter

notebooks

 Parsl can be used from
within a Jupyter
notebook

 Visualization of Parsl
graph in notebook

 Soon: transparent
pass through of
authentication tokens
from JupyterHub

 Investigating support
for JupyterLab

1515

Parsl scripts are execution provider

independent

 The same script can be run locally, on grids, clouds, or
supercomputers
– Works directly with the scheduler (no HTC-like setup)

 A single script may use many execution providers

 Parsl builds on libsubmit
– https://github.com/Parsl/libsubmit

 Currently supported execution providers:
– Local, Cloud (AWS, Azure, private), Slurm, Torque, Condor, Cobalt

1616

Parsl supports a variety of execution models

 Threads

– Local execution

 Ipython.parallel

– Pilot job model

 Swift/T

– Extreme scale
execution

 New execution
models can be added

Parsl

Engine Engine Engine

Controller

1717

Multiple sites supported within a single script

 Common for apps to require different execution resources and
environments

 Parsl apps may specify the site(s) on which they can be executed

– Including remote and local execution

1818

Elasticity

 Parsl DAGs are dynamic and grow over time

– Results in variable workloads with variable resource requirements

 Parsl provides a user-oriented flow control model that:

– Monitors waiting workload

– Provisions resources within user-defined bounds according to a parallelism
parameter

1919

App caching (memoization)

 Parsl apps are often expensive to
recompute

 In many development modes
results need not be recomputed

– During development or
interactive workflow

 Memoization optimizes
execution by caching app results
when called with the same
inputs

 Parsl relies on user control to
annotate deterministic functions

@app(‘Python’, dfk, cache=True)

def simulate(input_variable):

return input_variable * 10

Cache

Simulate(1) = 10

Simulate(7) = 70

Simulate(23) = 230

2020

Fault tolerance and checkpointing

 Failure modes:

– App failure, data error, node
failure, etc.

 Lazy vs immediate failure

 Simplest model: workflow level
checkpointing

– Exploits app caching to save app
results and reuse results for
subsequent execution

• Python objects and files

 Extensible model for checkpointing
to different persistent stores

 Enables automatic retry of
workflows and re-execution from
saved state

Checkpointing interface

DB

Cache

2121

Globus-based authentication and authorization

 A&A is hard today
– 2FA, X509, etc.

 Building native app
integration to provide
embedded access to
Globus (and other)
services

 Using scoped access
tokens, refresh tokens,
delegation support

 Developing support for
(semi-transparent)
SSH-based
authentication to
compute resources

2222

Globus data management

 Adding support for
transparent high
performance and reliable
data movement to/from
repositories, laptops,
supercomputers, …
– Initially Globus, then HTTP

 Support for site-specific
DTNs

 Compliments node-specific
staging and caching models

parsl_file =

File(globus://EP/path/file)

2323

Parsl in action: materials science

Stopping Power: a “drag” force
experienced by high speed protons,
electrons, or positrons in a material

Areas of Application

 Nuclear reactor safety

 Magnetic confinement / inertial
containment for nuclear fusion

 Solar cell surface adsorption

 Medicine (e.g., proton therapy
cancer treatment)

 Critical to understanding material
radiation damage

André Schleife and Cheng-Wei Lee (UIUC)

2016 ALCF INCITE Project

“Electronic Response to Particle Radiation

in Condensed Matter”

2424

Computing Stopping Power with TD-DFT

Stopping power (SP) can be accurately
calculated by time-dependent density
functional theory (TD-DFT)

 Excellent agreement with experiment

 Can vary orientation, projectile,
material

 Highly parallelizable

But we need many results

– Direction dependence

– Effect of defects

– Many more materials

TD-DFT is costly, so use ML too

Experiment
TD-DFT

2525

Parsl enables straightforward parallelization

Δ𝐻𝑓 = −1.0

Δ𝐻𝑓 = −0.5

2626

LSST: Dark energy weak lensing

 Large Synoptic Survey Telescope
(LSST): 10-year sky survey
delivering 200 PB of production
images

 Small to large scale workflows
needed to
1) process images and
2) perform analyses of
processed images

 Weak lensing analyses can
determine the structure of dark
matter, measure the expansion
rate of the universe, etc.

2727

LSST: Dark energy weak lensing

2828

Demo

(http://try-parsl.parsl-project.org)

http://try-parsl.parsl-project.org/

2929

Parsl provides 4 important benefits:

Intuitive programming model in Python
Integrates with the Python ecosystem

Makes parallelism more transparent
Parallel dataflow programming

Makes computing location more transparent
Runs your script on multiple distributed sites and diverse computing resources
(desktop to petascale) with transparent data movement

Enables provenance capture
Tasks have recordable inputs and outputs

3030

Conclusion: parallel workflow scripting is practical,

productive, and necessary, at a broad range of scales

 Swift programming model demonstrated feasible and scalable on HPC,
HTC, cloud systems

 Parsl takes this highly successful model and brings it to Python

– No porting of existing scripts to other languages

– Support for both Python and external app functions

 Already applied to numerous MTC and HPC application domains

– attractive for data-intensive applications

– and several hybrid programming models

 Deep integration with growing ecosystem:

– Globus, Python, Jupyter, workflow library, …

Workflow through implicitly parallel dataflow is
productive for applications and systems at many scales,
including on highest-end system

3131

Parsl Resources

 Getting started

– http://try-parsl.parsl-project.org

 Parsl tutorial

– https://github.com/Parsl/parsl-tutorial

 Documentation

– https://parsl.readthedocs.io/en/latest/

http://try-parsl.parsl-project.org/
https://github.com/Parsl/parsl-tutorial
https://parsl.readthedocs.io/en/latest/

3232

Questions?

U . S . D E P A R T M E N T O F

ENERGY

http://parsl-project.org

Try Parsl: http://try.parsl-project.org

