LineA webinar, $1^{\rm st}$ September 2022

A glimpse of axion phenomenology in astrophysics

Pierluca Carenza OKC, Stockholm University

Motivations to study axions and axion-like particles

Axions and ALPs are a window on high-energy physics

This hot topic is a motivation for interdisciplinary searches

Axion-SM interactions

Axion-photon vertex

$$\mathcal{L}_{\mathsf{a}\gamma} = -rac{g_{\mathsf{a}\gamma}}{4} \mathsf{a} \; F_{\mu
u} ilde{F}^{\mu
u} = g_{\mathsf{a}\gamma} \mathsf{a} \; \mathsf{E} \cdot \mathsf{B} \quad g_{\mathsf{a}\gamma} = C_{\gamma} rac{lpha}{2\pi f_{\mathsf{a}}}$$

Axion-fermion vertex

$$\mathcal{L}_{af} = rac{g_{af}}{2m_f} \bar{\Psi} \gamma^{\mu} \gamma^5 \Psi \; \partial_{\mu} a \quad g_{af} = C_f rac{m_f}{f_a}$$

Axions and ALPs in low-mass stars

HR diagram

Diagram of stars with the same age and different initial masses

HB stars: ALP production

The main processes are Primakoff conversion

and Inverse Decay

Bound on the R parameter

M. Salaris et al., Astron. Astrophys. 420 (2004), 911-919

Observations on Globular Clusters measure the R parameter

$$R = \frac{\textit{N}_{\rm HB}}{\textit{N}_{\rm RGB}} = \frac{\tau_{\rm HB}}{\tau_{\rm RGB}} = 1.39 \pm 0.03$$

The duration of the HB phase can be reduced at most of $\sim 15\%$

HB star bound on heavy ALPs

PC, O. Straniero et al., Phys. Lett. B 809 (2020), 135709

A small region is unconstrained: the "cosmological triangle"

Supernova axions

;

Core-Collapse Supernovae

For massive stars $(M>8M_{\odot})$ the nuclear fusion produces heavy elements in an onion structure and a degenerate iron core

Iron in the core cannot be burnt and the star starts to collapse

ç

Orders of magnitude for SNe

The SN core is an extreme environment

SN neutrinos

T. Fischer et al., Phys. Rev. D 94 (2016) no.8, 085012

SN copiously produce neutrinos of all flavors

SN1987A: neutrino signal

From the few $\bar{\nu}_e p \rightarrow n e^+$ events of SN 1987A we know that...

 $\sim 10^{53}$ erg emitted as neutrinos with energy $\sim {\it O}(15\,{
m MeV})$ in $\sim 10\,{
m s}$

The energy-loss argument

G. Raffelt, Lect. Notes Phys. 741 (2008)

Stars produce axions which escape, draining energy from the core

Axions affect strongly the SN neutrino burst if

$$L_a > L_{\nu} = 2 \times 10^{52} \, \mathrm{erg \, s^{-1}}$$

1:

Free-streaming and trapping regime

Axion-nucleon bremsstrahlung in SNe

M. S. Turner, Phys. Rev. Lett. 60 (1988)

SN axions are produced by nucleon-axion bremsstrahlung

where we have to include detailed nuclear physics and many body effects

Pion-axion conversion in SNe PC, B. Fore *et al.*, Phys. Rev. Lett. **126** (2021) no.7, 071102

SN axions are produced by pion-axion conversion

This is the leading axion production process in a SN despite the small density of pions $(\mathcal{O}(1\%))!!$

Flux from pion-axion conversion

T. Fischer, PC et al. [arXiv:2108.13726 [hep-ph]].

The harder spectrum is due to the pion rest mass

Comparison of axion fluxes at $t_{
m pb}=1\,{
m s}$

The SN bound

The SN bound is very important for QCD axions

Axion-Like Particles from Supernovae: the photon coupling

ALP production channels

G. Lucente, PC et al., JCAP 12 (2020), 008

ALPs are coupled with photons and are produced by:

Primakoff conversion

Inverse Decay

SN1987A ALP bound

Nice complementarity with other bounds

Can ALP revitalize the SN shock?

Massive ALP could decay inside the SN revitalizing the shock

Energy deposited at $t_{
m pb}=0.3\,{
m s}$, the red line indicates where the ALP deposit the same energy as neutrinos

Direct signatures from the Diffuse SN ALP Background

SN axion phenomenology: conversion of light axions

DSNALPB

F. Calore, PC et al., Phys. Rev. D 102 (2020) no.12, 123005

The nucleon coupling is less constrained, larger flux with NN

DSNALPB with $g_{ap}=1.2\times 10^{-9}$ and $g_{a\gamma}=5.3\times 10^{-12}\, {\rm GeV}^{-1}$

ALP conversion into photons

D. Horns et al., Phys. Rev. D 86 (2012), 075024

The Galactic magnetic field will convert into photons both the DSNALPB and the point-like ALP flux from SN1987A (white dot)

Conversion probability for $m_a \ll E = 50 \, \text{MeV}$, $g_{a\gamma} = 3 \times 10^{-13} \, \text{GeV}^{-1}$

Fermi-LAT data

Skymap of gamma-rays observed by Fermi-LAT

The ALP signal

The bound

F. Calore, PC et al., [arXiv:2110.03679 [astro-ph.HE]].

The bound is stronger than CAST and can be improved by future $\gamma\text{-ray}$ measurements

SN axion phenomenology: decay into electron-positron pairs

$a \rightarrow e^+e^-$ is not invisible

Positrons lose energy in $10^3 - 10^6$ yrs

Electron Positron Annihilation

Is it possible to explain a fraction of the 511 keV line with ALPs? Agaronyan, F. A., and A. M. Atoyan, 1981, Sov. Astr. Letters 7, 395

The 511 keV line

N. Prantzos et al. Rev. Mod. Phys. 83 (2011), 1001-1056

The Galactic flux at 511 keV is partially unexplained

511 keV photon skymap for $g_{ae} = 4 \times 10^{-12}$ F. Calore, PC *et al.*, Phys. Rev. D **104** (2021) no.4, 043016

ALPs decay very close to the SN and positrons are trapped by $B \sim O(\mu G)$

511 keV photon skymap for $g_{ae} = 2 \times 10^{-19}$ F. Calore, PC *et al.*, Phys. Rev. D **104** (2021) no.4, 043016

ALPs decay far from to the SN, smeared distribution

Let's compare with SPI data...

Very good agreement for the vertical distribution...

... much less agreement with the horizontal one

No ccSN-based mechanisms explains the 511 keV line!!

ALPs escaping from the Galaxy

Positrons trapped in the intergalactic medium ($B \sim \rm nG$) annihilate in $\sim \rm Gyr$ and photons are redshifted

Extragalactic X-ray diffuse flux

The extragalactic flux is redshifted, no more 511 keV line

Diffuse flux for $g_{ae} = 7 \times 10^{-21}$

Overwiev plot

F. Calore, PC et al., Phys. Rev. D 104 (2021) no.4, 043016

Conclusions

- Axions and ALPs play a major role in astrophysics
- ► More on low-mass stars: energy transferred by ALPs?
- More on SNe: ALPs coupled to electrons?
- Even more: ALP conversions in turbulent magnetic fields?

THANKS FOR YOUR ATTENTION