Constraining the Nature of Dark Matter with Milky Way's Nearest Neighbors

Ting Li
Fermi National Accelerator Laboratory (Dark Energy Survey)

LineA
Sep 28th, 2017
 11

The Dark Energy Survey (DES)

- Constrain the Dark Energy Equation of State with:
- Supernova
- Weak Lensing
- Large Scale Structure
- Galaxy Clusters

DECam

- 62 2k x 4k CCDs
- 570 megapixel camera
- <20s readout time

DES Collaboration 2017

- ~3 deg² field-of-view
- Unprecedented sensitivity

Outline

- Missing Satellites Problem - Dark Matter Models
- CDM vs. WDM vs. SIDM, etc.
- Constraints on WIMP Cross Section - Indirect Dark Matter Detection
- WIMP: Weakly Interacting Massive Particles
- Constraints on MACHO Abundance
- MACHO: MAssive Compact Halo Object
- ^CDM model is in concordance with astronomical observations

Smallest Structures Probe Fundamental Characteristics of Dark Matter

Aquarius Simulation

$1 \mathrm{Mpc}^{3}$ simulation box

One Milky-Way sized halo

Aquarius Simulation

$1 \mathrm{Mpc}^{3}$ simulation box

One Milky-Way sized halo

Aquarius Simulation

$1 \mathrm{Mpc}^{3}$ simulation box

One Milky-Way sized halo

Large Magellanic Cloud

Classical Dwarf Spheroidal Galaxies (dSph)

Sculptor

Dwarf Galaxy Discovery Timeline

Dwarf Galaxy Discovery Timeline

Ultra-Faint Dwarf (UFD) Galaxies

Finding Milky Way Satellite Galaxies

THE DARK
ENERCY SURVEY

Koposov et al. (2008) Walsh et al. (2009) Willman et al. (2010)

Color-Magnitude Domain

Spatial Domain

Dwarf Galaxy Discovery Timeline

New Dwarf Galaxy Candidates Discovered by DES

Year 1 + Year 2 data

Blue = Known prior to 2015
Red triangles $=$ DES Year 2 candidates
Red circles = DES Year 1 candidates
Green = Other new candidates

Solving the "Missing Satellite Problem"

What Are Dwarf Galaxies?

Milky Way Satellites are Most Dark-Matter-Dominated Galaxies.

"Brightness"

What Are Dwarf Galaxies?

Milky Way Satellites are Most Dark-Matter-Dominated Galaxies.

"Brightness"

Spectroscopic Campaign w/ 4-10 m

$$
\begin{aligned}
& \mathrm{R} \sim 5 \mathrm{k}-20 \mathrm{k} \\
& \text { Multiplexing: } 50-400 \text { stars } \\
& \text { FOV: } 15 \text { arcmin }-2 \text { deg in diameter } \\
& \text { Velocity precision: } 0.5-2 \mathrm{~km} / \mathrm{s} \text { (at high SNR) }
\end{aligned}
$$

Spectroscopic Followup w/ Magellan/IMACS

Magellan Telescopes
$2 \times 6.5 \mathrm{~m}$ telescopes

Inamori Magellan Areal Camera and Spectrograph (IMACS)

Magellan/IMACS

Slit Mask Image

Spectral/Wavelength Dimension

Wavelength Calibration Frame

11111

Spectral/Wavelength Dimension

Atomic emission lines from arc lamps

2D Stellar Spectra

DES Collaboration

Reticulum II

DES Collaboration

Reticulum II

Reticulum II: One of Newest Dwarf Galaxies

 ENERGY SURVEY

- ~30 members identified in Reticulum II
- Velocity peak indicative of a genuine stellar

Quantity Value association

- Dynamical mass calculated from the width of the velocity dispersion
- Every measured characteristic of Reticulum is consistent with the known population of dwarf galaxies

Simon et al. 2015 (DES Collaboration) (see also Walker et al. 2015, Koposov et al 2015b)

Tucana III: classification unclear

26 members identified

$V_{\text {hel }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	-102.3 ± 0.4
$V_{\mathrm{GSR}}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	-195.2 ± 0.4
$\sigma\left(\mathrm{~km} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	<1.5
$\operatorname{Mass}^{\left(\mathrm{M}_{\odot}\right)^{\mathrm{a}}}$	$<8 \times 10^{4}$
$\mathrm{M} / \mathrm{L}_{V}\left(\mathrm{M}_{\odot} / \mathrm{L}_{\odot}\right)^{\mathrm{a}}$	<240

- Velocity dispersion is NOT resolved

Need multi-object spectragraph with higher resolution and better stability to achieve higher velocity precision (< 1 km/s)!

CDM Predictions for Future Dwarf Discoveries

New Dwarf Galaxies in the Era of LSST

Depth limit w/ DES ~ 30 mag arcsec $^{-2}$

New Dwarf Galaxies in the Era of LSST

Observational Bias:
Observations are not detecting the faintest satellites due to the limited

Depth limit w/ DES ~ $30{\text { mag } \text { arcsec }^{-2}}^{2}$

New Dwarf Galaxies in the Era of LSST

- Two new ultra-faint galaxy candidates found in first 300 deg 2 of Hyper-Suprime Cam SSP data
- They are likely undetectable in any previous survey
- < 5 members can be followed spectroscopically with $8-10 \mathrm{~m}$ class telescope

Need 30 m class telescopes to confirm its dark matter content

New Dwarf Galaxies in the Era of LSST

- Two new ultra-faint galaxy candidates found in first 300 deg 2 of Hyper-Suprime Cam SSP data
- They are likely undetectable in any previous survey
- < 5 members can be followed spectroscopically with $8-10 \mathrm{~m}$ class telescope

Need 30 m class telescopes to confirm its dark matter content

Why Studying the Milky Way Satellite Galaxies

- Missing Satellites Problem - Dark Matter Models
- CDM vs. WDM vs. SIDM, etc.
- Constraints on WIMP Cross Section - Indirect Dark Matter Detection
- WIMP: Weakly Interacting Massive Particles
- Constraints on MACHO Abundance
- MACHO: MAssive Compact Halo Object

Indirect Detection of Dark Matter WIMP Annihilation

Many dark matter models predict annihilation into energetic Standard Model particles
(e.g., gamma rays, neutrinos, electrons, ...)
Annihilation rate scales as density squared

Fermi-LAT

"Galactic Center GeV Excess"

Hooper \& Goodenough 2009, 2011, Abazajian \& Kaplinghat 2012, Hooper \& Slatyer 2013, Gordon \& Macias 2013, Huang et al. 2013,
Dylan et al. 2014, Calore et al. 2014, 2015, Abazajian et al. 2014, Cholis et al. 2014, Carlson et al. 2015, Gaggero et al. 2015, LAT Collaboration 2015, Lee et al. 2015, Bartels et al. 2015

Many proposed interpretations, e.g., millisecond pulsars, outburst of cosmic rays, dark matter annihilation, ...
$10^{\circ} \times 10^{\circ}$
Residual map 1-3 GeV
Image Credit: Tim Linden

Indirect Detection of Dark Matter WIMP Annihilation

Many dark matter models predict annihilation into energetic Standard Model particles (e.g., gamma rays, neutrinos, electrons, ...)

Annihilation rate scales as density squared

Nearby clumps of dark matter - dwarf galaxies - make ideal targets:
-Clean - no astrophysical source

- Dynamical mass inferred from stellar kinematics
- Cross-section upper limit from non-detection

Dark Matter Searches in Gamma Rays

- Reticulum II gamma ray excess
- LAT Collaboration, Pass 8: local p-value $=0.06$ (1.5 σ)
- Geringer-Sameth+2015, Pass 7: local p-value = 0.01 (2.3б)

Dark Matter Searches in Gamma Rays

- Reticulum II gamma ray excess
- LAT Collaboration, Pass 8: local p-value $=0.06$ (1.5 σ)
- Geringer-Sameth+2015, Pass 7: local p-value $=0.01$ (2.3б)

How strong the signal do we expect to see from Reticulum II?
J-factor - the strength of the annihilation signal, inferred from stellar kinematics

| Table 1. Reticulum II
 Quantity Value
 J-Factor $\left(0.2^{\circ}\right)$ $\log _{10} J=18.8 \pm 0.6 \mathrm{GeV}^{2} \mathrm{~cm}^{-5}$
 J-Factor $\left(0.5^{\circ}\right)$ $\log _{10} J=18.9 \pm 0.6 \mathrm{GeV}^{2} \mathrm{~cm}^{-5}$ |
| :--- | :--- |

Simon et al. 2015 (DES Collaboration)

Dark Matter Searches in Gamma Rays

- Reticulum II gamma ray excess
- LAT Collaboration, Pass 8: local p-value = 0.06 (1.5 σ)
- Geringer-Sameth+2015, Pass 7: local p-value $=0.01$ (2.3б)

How strong the signal do we expect to see from Reticulum II?
J-factor - the strength of the annihilation signal, inferred from stellar kinematics

Table 1. Reticulum II

Quantity	Value
J-Factor $\left(0.2^{\circ}\right)$	$\log _{10} J=18.8 \pm 0.6 \mathrm{GeV}^{2} \mathrm{~cm}^{-5}$
J-Factor $\left(0.5^{\circ}\right)$	$\log _{10} J=18.9 \pm 0.6 \mathrm{GeV}^{2} \mathrm{~cm}^{-5}$

Simon et al. 2015 (DES Collaboration)

ENERGY SURVEY

Indirect Detection of Dark Matter WIMP Annihilation

We will soon be able to either confirm or refute the dark matter interpretation of the Galactic Center excess using Milky Way satellites

Indirect Detection of Dark Matter WIMP Annihilation

We will soon be able to either confirm or refute the dark matter interpretation of the Galactic Center excess using Milky Way satellites

Improve J-factor Uncertainty

In order to achieve $\log (\mathrm{J})$ uncertainty < 0.2 dex:

- measure >200 stars in each ultrafaint dwarf
- w/ high velocity precision < 2 km/s

The cross section analysis depend on J-factor uncertainty.

Decreasing J-factor uncertainty can be a powerful way to improve sensitivity.

Why Studying the Milky Way Satellite Galaxies

- Missing Satellites Problem - Dark Matter Models
- CDM vs. WDM vs. SIDM, etc.
- Constraints on WIMP Cross Section — Indirect Dark Matter Detection
- WIMP: Weakly Interacting Massive Particles
- Constraints on MACHO Abundance
- MACHO: MAssive Compact Halo Object

MACHO Constraints

ENERGY SURVEY

Belokurov \& Koposov

MACHO Dark Matter Constraints w/ Eridanus II

- Dwarf galaxy candidate first discovered in DES
- Distant : ~370 kpc (beyond the virial radius of MW)
- Smallest galaxy that own its star cluster.

Eridanus II: Dark Matter Content

Li et al. 2017 (DES Collaboration)

$v_{\text {hel }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$75.6 \pm 1.3 \pm 2.0$
$v_{\mathrm{GSR}}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	-66.6
$\sigma_{v}\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$	$6.9_{-0.9}^{+1.2}$
$M_{\text {half }}\left(\mathrm{M}_{\odot}\right)$	$1.2_{-0.3}^{+0.4} \times 10^{7}$
$M / L_{V}\left(\mathrm{M}_{\odot} / \mathrm{L}_{\odot}\right)$	420_{-140}^{+210}

Eridanus II: Dark Matter Content

Li et al. 2017 (DES Collaboration)

$v_{\text {hel }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$75.6 \pm 1.3 \pm 2.0$
$v_{\mathrm{GSR}}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	-66.6
$\sigma_{v}\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$	$6.9_{-0.9}^{+1.2}$
$M_{\text {half }}\left(\mathrm{M}_{\odot}\right)$	$1.2_{-0.3}^{+0.4} \times 10^{7}$
$M / L_{V}\left(\mathrm{M}_{\odot} / \mathrm{L}_{\odot}\right)$	420_{-140}^{+210}

Eridanus II is dark matter dominated dwarf galaxy

MACHO Dark Matter Constraints w/ Eridanus II

- Dwarf galaxy candidate first discovered in DES
- Distant : $\sim 370 \mathrm{kpc}$ (beyond the virial radius of MW)
- Smallest galaxy that own its star cluster.
- If the cluster is indeed in the center of the dwarf, the survival of this star cluster can place constraints on the MACHO abundance (Brandt 2016)

MACHO Dark Matter Constraints w/ Eridanus II

- Dwarf galaxy candidate first discovered in DES
- Distant : $\sim 370 \mathrm{kpc}$ (beyond the virial radius of MW)
- Smallest galaxy that own its star cluster.
- If the cluster is indeed in the center of the dwarf, the survival of this star cluster can place constraints on the MACHO abundance (Brandt 2016)

Li et al. 2017 (DES Collaboration)

MACHO Dark Matter Constraints w/ Eridanus II

- Dwarf galaxy candidate first discovered in DES
- Distant : ~370 kpc (beyond the virial radius of MW)
- Smallest galaxy that own its star cluster.
- If the cluster is indeed in the center of the dwarf, the survival of this star cluster can place constraints on the MACHO abundance (Brandt 2016)

Rule out MACHO as the dominated DM at 10-100 Msun

Li et al. 2017 (DES Collaboration)

Summary

- Milky Way satellites are powerful tools to probe the nature of dark matter.
- Spectroscopic follow-up observations are necessary to confirm the ultra faint dwarf galaxy candidates.
- Ultra faint dwarfs are good site for indirect dark matter search.
- The survival of the central star cluster in the dwarf galaxies can put constraints on the MACHO abundance.
- Ultra faint dwarfs are important to understand the galaxy evolutions on the smallest scale.

backup slides

Why Studying the Milky Way Satellite Galaxies

- Missing Satellites Problem - Dark Matter Models
- CDM vs. WDM vs. SIDM, etc.
- Constraints on WIMP Cross Section - Indirect Dark Matter Detection
- WIMP: Weakly Interacting Massive Particles
- Constraints on MACHO Abundance
- MACHO: MAssive Compact Halo Object
- Star Formation in Dwarf Galaxies

Star Formation in Dwarf Galaxies

Baryon Effects:

Astrophysical process prevent stars from forming in most low-mass halos

Star Formation in Dwarf Galaxies

ENERCY SURVEY

Fermilab

Ram Pressure Stripping?

Quiescent vs Star Forming

HI: Neutron Hydrogen Gas

Speakers et al. 2014

Reionization?

80\% of the stars formed 13 Gyr ago 100% of the stars formed 12 Gyr ago Quiescent Milky Way Dwarfs

Star Formation in Dwarf Galaxies

Ram Pressure Stripping?

Quiescent vs Star Forming

HI: Neutron Hydrogen Gas

Speakers et al. 2014

Reionization?

80\% of the stars formed 13 Gyr ago 100% of the stars formed 12 Gyr ago Quiescent Milky Way Dwarfs

Star Formation in Dwarf Galaxies

Ram Pressure Stripping?

Quiescent vs Star Forming

HI: Neutron Hydrogen Gas

Speakers et al. 2014

* Eridanus II

Reionization?

80\% of the stars formed 13 Gyr ago 100% of the stars formed 12 Gyr ago

Quiescent Milky Way Dwarfs

Orbit and Infall History

- $V_{\text {hel }}=75.1 \mathrm{~km} / \mathrm{s}$
- $V_{\text {GSR }}=-67.0 \mathrm{~km} / \mathrm{s}$
- Moving towards Milky Way
- Compared with N-body simulations
- Bound to Milky Way
- Most likely on its second passage - orbit w/ high eccentricity

Li et al. 2017 (DES Collaboration)

