
Extreme Scale Image 
Simulation Workflows for 
LSST DESC
Antonia Sierra Villarreal, Postdoctoral Researcher
Argonne National Laboratory
May 26th, 2022



The Big Questions

● What is the Vera Rubin Observatory LSST DESC Second 
Data Challenge Simulation Campaign

○ Corollary: why is this such a long title?

● How do we start from nothing to generating simulated 
telescope quality images?

● How do we turn these into scalable and portable 
workflow?

● What lessons can we take away from this going forward?

2



What Even is the Vera Rubin 
Observatory LSST Second Data 
Challenge?

3



The “Standard” Cosmology

● “Lambda Cold Dark 
Matter Cosmology”

● Measured to very high 
precisions by multiple 
experiments

● Fit with just 7 
cosmological 
parameters.

● While some tensions 
exist, competing 
models struggle

4

ESA and the Planck Collaboration



DC2 Image Simulation Campaign

5

● Vera Rubin Observatory LSST is a massive undertaking 
planning to observe 18,000 deg2 of the night sky over 
the course of ten years.

● The Dark Energy Science Collaboration (DESC) is one of 
several science collaborations seeking to use this exciting 
data.

○ We want to constrain cosmological parameters

● This is an unprecedented amount of data in cosmology — 
effectively surveying the entire southern night sky once 
every three nights!



DC2 Image Simulation Campaign

● Our goal: understand those 7 
parameters that define the 
universe

● Many probes: large-scale 
structure, weak lensing, type 
Ia supernovae, galaxy clusters, 
strong lensing…

● LSST will drive down statistical 
error

● DESC must drive down 
systematic error

● The key? Simulations!

6



Data Challenge 2 Specifications

● Simulation 300 
degrees2 of the night 
sky for five years 
depth

● “Wide-Fast-Deep” 
component to enable 
large scale structure 
studies

● “Deep Drilling Field” 
component to enable 
transient studies

● Six color bands

7

Example of DC2 Coverage from LSST DESC 2021 paper



Starting from Nothing to 
Telescope Quality Images

8



A Long and Complicated Road…

9

Our Inputs!



…Build to an Answer

10

Our Core Application



So Many Contributors!

11

There are so many contributors to list, even working directly with me!

● Seriously, there are about ~90 authors on the DC2 paper.
● Full details of the effort: https://arxiv.org/abs/2010.05926

Some particular thanks (in no real order) go to:

● The imSim development team for iterating on the software 
throughout the runs

● The Parsl team for working exhaustively to make sure our pipelines 
ran on HPC resources

● The DC2 team behind me for working hard to get me inputs!

https://arxiv.org/abs/2010.05926


Image Simulation

12

● Galsim is open source 
software for the simulation 
of astronomical objects

● imSim is a Python code 
handling:
○ the pointing of the 

telescope
○ simulation of lensing and 

dust
○ simulation of extragalactic 

objects and stars
● For each sensor (grey box 

on right), simulate one 
image



How Do We Scale This Up?

13



Step 1: Containers

14

Why even consider using 
containers?

● Underlying software is large, 
complex, and evolving

● Available compute resources 
were heterogeneous

Our solution? Docker!

● Underlying Docker container to 
run imSim

● Shifter and Singularity both 
convert Docker to their formats



Container Example

● LSST Software container 
as baseline

● Specific software added in

● Ideally tagged images for 
reproducibility 

15



Step 2: Parsl

● Parsl is a parallel 
scripting Python library.

● “Worker” processes are 
initialized on computed 
resources

● Python functions or 
arbitrary bash 
commands can be 
packaged as Parsl 
“apps”

● A driver process 
distributes “app” calls to 
workers

16



Some Parsl Examples

Python apps are a decorator 
around any Python function. 
Used for:
● pre-processing scripts
● bundling scripts
● archival scripts

Bash apps are also a decorator, 
but execute a string return on 
the system. Used for:
● container downloads
● container launches

17



Step 3: Bundler Scripts

We need to balance the following 
needs:
● Each container has an expected 

memory footprint
● Multiple sensors from the same visit 

can share some memory 
requirements

● Each sensor has an average memory 
footprint

● The sensor memory footprint varies 
by the object being drawn

Python scripts take all of this 
information into account, the 
architecture of the machine, and 
creates bundles of commands to be 
run as Parsl apps.

18



The Resulting Workflow

● Parsl driver started with a directory 
of raw inputs to cycle through

● Preprocessing scripts determine the 
optimal work configuration

● Parsl driver submits a job request 
to compute resources

● Once resources are available, 
workers are started on compute 
nodes and connect to the Parsl 
driver

● Each worker runs a container that 
launches imSim for a given sensor 
list

● If a worker finishes one container, 
it cycles in a new one from the 
overall task list

19



The Final Results?

● 100M+ compute hours 
used

● Up to 2000 nodes used 
simultaneously on 
NERSC Cori

● Up to 4000 nodes on 
ALCF Theta

● Five years of simulated 
LSST depth

● Multiple DESC projects 
using these outputs

20



Some Example Raw Outputs

21



Validating through Many Eyeballs

22



Some Quantitative Validation

23



And Compare to Observations

24



What Can We Take Forward?

25



Hard Earned Lessons

26

1. Parsl driver needs to be run on a stable and persistent resource — 
or else lose the connection to potential workers
○ The Parsl driver can be manually reconnected, but this can be 

rough on whoever is stuck monitoring things (me)
2. Containers work, but may have some unquantified costs

○ How much do you lose from a more generic Python installation 
versus something architecture specific?

○ How much do container start-up times matter for your 
application? What about the memory footprint?

3. Parallelizing by visit means slow sensors may lose compute time
○ Parsl only replaces work based on a complete container being 

finished, not per sensor
○ Sensors with more objects may delay a node substantially 



Potential Improvements

● Utilize cloud resources to run our Parsl driver on
○ could potentially leverage multiple compute resources if 

authentication can be worked out
○ probably at least as stable as some HPC resources
○ Minimizing a need to overload input files may be tricky

● Further container optimizations
○ can likely pass Python library information into the container to 

leverage architecture specific builds
● Code refactoring for scaling

○ imSim developers are exploring leveraging GPUs as well as 
refactoring the code around individual sensors rather than visits

27



What does the future bring?

● Still to be seen!
● DESC members are 

using DC2 products to 
validate science 
pipelines

● Parsl being used in 
multiple ways within 
DESC
○ image processing
○ theory pipelines

● Smaller, more complex 
simulations may be 
needed going forward

28



Related Challenge: Data Serving

One main advantage to DC2 is it taught us a lot about data 
management.

● Large amount of inputs and outputs to track provenance of across 
multiple sites

● Complicated science workflow to document
● Use of PostgreSQL and Apache Spark for data exploration
● Internal Python based reader developed to go through inputs

A lot of these lessons will carry forward, especially as we work with our 
own In-Kind Contributions, where we may leverage compute resources 
outside of the US.

29



Thank you for listening!

30


