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❖ Redshift.
❖ Stellar population: velocity 

and age.
❖ Gas properties: velocity, dust 

content, metal content, density, 
temperature, ionization state, 
and ionizing source.



The Data Revolution

❖ SDSS: multi-band images of 
~1/3 of the sky, and spectra 
of millions of galaxies and 
stars.

❖ PAN-STARRS and ZTF: 
multi-band time series data 
of numerous variable stars, 
supernovae, AGN, and more.

❖ Gaia: positions and velocities 
of ~1 billion stars in the 
Milky Way.

image credit: Michael Blanton and the SDSS-III 
Collaboration

The volume and rate of information grows exponentially: sky 
surveys now generate ~PBs of data + derived products.



The Data Revolution

❖ Different telescopes and 
instruments map 
astronomical objects 
throughout the entire 
electromagnetic spectrum.

❖ Time domain surveys now 
provide multi-band time 
series of astronomical objects.

❖ Integral Field Units (IFU) 
provide spatially-resolved 
spectroscopic information.

visible infrared sub-mm/mm

radio combined x-ray

There is a great increase in data dimensionality and complexity.

image credit: Marc White 
(RSAA-ANU)

image from: www.almaobservatory.org



The Data Revolution

image credit: Vogelsberger+ (2020)

We no longer collect information only from our Universe: 
simulations now produce rich and complex datasets and provide 
us with mock observations.



The Data Revolution
What is fundamentally different now?

❖ We can no longer inspect all of the data by eye.

❖ Patterns and correlations can no longer be visualized.

❖ The increase in the data information content gives rise to a new 
scientific methodology:

❖ Large-scale or high-resolution simulations are very expensive to re-run.

Theory Experiment / 
observation Analysis Knowledge

Dataset Data exploration Hypothesis Analysis Knowledge



Challenges in the Big Data Era
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Challenges in the Big Data Era:
• Cleaning, sorting, and storing the data.
• Classification and regression.
• Generation of new data.
• Discoveries of new phenomena.
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Machine Learning as a tool in the astronomers toolkit

Arxiv: 1904.07248

Arxiv: 1912.02934



The two flavors of Machine Learning
Supervised Machine Learning: given a list of objects with measured 
properties and a target variable, train an algorithm to predict the target 
variable of previously-unseen examples.  

Common tasks: classification and regression.

Popular algorithms: Support Vector Machine (SVM), Decision Trees (DT) 
and Random Forest (RF), and artificial neural networks (shallow and deep).

input dataset: 
X - measured properties

Y - target variable

Supervised Learning 
Algorithm Y’

Y

cost function = f{(Y - Y’)2}



Supervised Learning: examples
Common tasks: classification and regression.

Popular algorithms: Support Vector Machine (SVM), Decision Trees (DT) 
and Random Forest (RF), and artificial neural networks (shallow and deep).

A set of distant 
galaxies images A set of measured 

features: 
concentration, 

asymmetry, 
smoothness, , 

moment of Light, 
Gini Coefficient, 

etc…

SVM
morphological 
classification:

late type or early 
type galaxy

Morphological classification of galaxies by Huertas-Company+ (2008).



Supervised Learning: examples
Common tasks: classification and regression.

Popular algorithms: Support Vector Machine (SVM), Decision Trees (DT) 
and Random Forest (RF), and artificial neural networks (shallow and deep).

A set of images taken 
at different nights:

A set of features 
measured from 
the difference 

image

RF

Candidate 
classification:

real variable source 
or an artifact

Real/bogus classification in the Palomar Transient Factory by Bloom et al. (2012).



Supervised Learning: examples
Common tasks: classification and regression.

Popular algorithms: Support Vector Machine (SVM), Decision Trees (DT) and 
Random Forest (RF), and artificial neural networks (shallow and deep).

A set of galaxies images 
in different bands:

A set of 
photometric 

features
RF*

Photometric 
redshift

Measuring photometric redshifts by Hoyle (2016).

A set of images 
derived from the raw 

images

CNN



Supervised Learning: examples
Common tasks: classification and regression.

Popular algorithms: Support Vector Machine (SVM), Decision Trees (DT) and 
Random Forest (RF), and artificial neural networks (shallow and deep).

A set of simulated 
galaxy images

Detection of galaxy-galaxy strong gravitational lenses by Lanusse et al. 2017.

CNN

Image classification:
contains strong lensing 

signal or not.



Supervised Learning: examples
Common tasks: classification and regression.

Popular algorithms: Support Vector Machine (SVM), Decision Trees (DT) and 
Random Forest (RF), and artificial neural networks (shallow and deep).

A set of spectral cubes 
around the 13CO emission: Pixel classification:

position of stellar 
feedback features 

Identification of stellar feedback bubbles in CO emission by Xu et al. (2020).

CNN

x

y

wav
ele

ngth
Pixel regression:

fraction of the mass 
coming from 

feedback 



Which algorithm should we use?
SVM ANN RF Deep
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moment of Light, Gini Coefficient, etc…

As our input data, we can either use measured features or the raw data.
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Notes on input data
As our input data, we can either use measured features or the raw data.

A set of measured features: 
concentration, asymmetry, smoothness, , 
moment of Light, Gini Coefficient, etc…

less-complex models: SVM & RF more-complex models: deep nets

allows/requires us to incorporate our 
scientific knowledge into the task

allows us to build a more general tool, but 
requires us to incorporate our scientific 

knowledge in a different way

information loss too much information?



The two flavors of Machine Learning
Unsupervised Machine Learning: given a list of objects with 
measured properties (but no target variable), find patterns in 
the data.

Common tasks: clustering, dimensionality reduction, and 
outlier detection.

Unsupervised 
Learning Algorithm Y

cost function = f{X}

input dataset: 
X - measured properties



Why should we consider Unsupervised Learning?
1. Clustering

property 1
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Why should we consider Unsupervised Learning?
2. Dimensionality Reduction

From: Gaia Collaboration et al. 2018 



Why should we consider Unsupervised Learning?
3. Outlier Detection



Machine Learning as a tool in the astronomers toolkit

Arxiv: 1904.07248

Arxiv: 1912.02934



(1) How can we discover new types of objects?

(2) How can we discover new trends and correlations?



The Search for the Unknown Unknowns
What are outliers?

❖ “Bad object”: problem with the instrument, faulty 
observation, pipeline error, etc.

❖ Misclassified object: a star in a catalog of galaxies.

❖ Tail of a distribution: the most massive black hole, the most 
luminous supernova.

❖ Unknown unknowns: completely new objects we did not 
know we should be looking for.

In astronomy: processes which happen on shorter time scales.



The Search for the Unknown Unknowns
❖ We used an Unsupervised Random Forest algorithm to assign distances between ~2M 

galaxy spectra from the SDSS. 

❖ The algorithm learns the data structure through the correlations between different features.

❖ The galaxies with the largest distances from the rest were defined as outliers. 

❖ A manual inspection of the 400 weirdest galaxies revealed a diverse group of outliers.

Baron & Poznanski (2017), Reis+ (2018)

H� strong

Extremely red &
sodium excess

bad spectra

stars

BPT outliers

Weak H↵

Broad [OIII]

supernovae

Unusual lines

Velocity structure

Blends



The Search for the Unknown Unknowns

Baron & Poznanski (2017), Reis+ (2018)
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The Search for the Unknown Unknowns
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Å

�
1
]

NaID2 NaID1

H↵2 H↵1[SII]2

[SII]1(g) multiple emission lines

SDSS J161754.02+320627.4

6300 6500 6700 6900
rest wavelength [Å]
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Baron & Poznanski (2017), Reis+ (2018)



Post starburst E+A galaxies & AGN

X-ray Energy

opticalsub-mm

KCWI@Keck 

MUSE@VLT 

Baron et al. (2018)

Baron+ (2020)

ALMA

NOEMA

XMM-Newton



What is there in my dataset?
sample of the dataset entire dataset



What is there in my dataset?
sample of the dataset entire dataset

In Baron & Ménard (2020), we presented the Sequencer algorithm.
The algorithm searches for a sequence in the data. If such sequence is found, it reorders 

the objects according to the detected sequence.



Examples from Astronomy



Sequencer-Assisted Discovery
We applied the Sequencer to spectra of type I AGN. The 
ordered dataset reveals a new correlation between the 

narrow and broad emission lines! 

Baron & Ménard (2019)
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Sequencer-Assisted Discovery

Baron & Ménard (2019)

Using this newly- 
discovered 
correlation, we 
proposed a method to 
estimate the black 
hole mass in obscured 
type II AGN. 



Final remarks
❖ The outlier detection algorithm and the Sequencer algorithm 

are available online at: https://github.com/dalya/.

❖ Supervised Learning algorithms have allowed us to automate 
various tasks, providing speed and computational ease. 

❖ In recent years, the use of Supervised Learning algorithms have 
allowed us to do things we could not do before (e.g., detection 
of strong lenses, detection of stellar feedback features, etc). 

❖ Unsupervised Learning algorithms can be used to extract new 
knowledge from existing datasets, and can thus facilitate new 
discoveries. 

https://github.com/dalya/


Thanks! :) Dalya Baron (TAU)
dalyabaron@gmail.com
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