Unlocking the full potential of galaxy spectroscopic surveys

Rita Tojeiro
University of St Andrews
STFC Ernest Rutherford Fellow
L'Óreal-UNESCO For Women in
Science UK\&I Fellow

galaxy redshift surveys $=$ precise 3-dimensional positions

+ spectra

two-point statistics
higher-point statistics small-scale clustering
galaxy physics quasar physics LyA cosmology topology / voids cross-correlations with [...]
-> expansion, neutrinos, inflation, gal evolution, gravity, composition, etc

I - Galaxy spectra and non-parametric SFHs
II - Measuring redshift space distortions on large scales
III - The formation time of halos

Simple stellar populations as galaxy building blocks

The problem to solve

$$
F_{\lambda}=\int_{0}^{t} f_{\text {dust }}\left(\{p\}, t \not{\psi(t, Z))} S_{\lambda}(t, Z) d t\right.
$$

The problem to solve

$$
F_{\lambda}=\int_{0}^{t} f_{\text {dust }}\left(\{p\}, t \sqrt[\psi(t, Z)]{ } S_{\lambda}(t, Z) d t\right.
$$

Simple in principle (especially in the optical)!

Complications due to data quality, poor modelling, large degeneracies and very large datasets.

Describing galaxies

Parametric star formations histories

Parametric SFHs reduce dimensionality, but are effectively a prior and demonstrably lead to biases

Non-parametric star formations histories

Non-parametric SFHs fit many more parameters, but are less dependent on choice of parametrisation. Huge demand on data and models.

Full-spectral fitting

(we've been doing this a while and getting good at it: see also e.g.
MOPED Heavens et al., STARLIGHT Cid Fernandes et al., STECMAP Ocvirk et al., Koleva et al., MacArthur et al., FIREFLY Wilkinson et al.)

VESPA
[Tojeiro et al. 2007,2009]

Adaptable age/Z grid depending on quality and range of data.

Z free for each age.
Chooses the 'right' matrix to invert and does it - fast.

Fits spectroscopy (absorption line only) and photometry

Dust attenuation modelled with mixed-slab 2-parameter dust model of Charlot \& Fall 2000

Works with any SSP model

What would you do with 800,000+ SFHs?

How do galaxies assemble their stellar mass?
[Tojeiro et al 2011a,b, Tojeiro et al. 2012a]
Why are red and blue spirals or ellipticals different? [Tojeiro et al. 2013]

How does environment affect the formation of dark matter halos and the assembly of stellar mass? [Eardley, Tojeiro, Peacock in prep]

How does the population of type la supernovae progenitors evolve with redshift?
[Aubourg, Tojeiro et al. 2008; Brandt, Tojeiro et al. 2010]
Does the stellar initial mass function (IMF) evolve with redshift? [Wilkins, et al. 2008]

Is the Universe homogeneous? [Hoyle, Tojeiro et al. 2012]
Matching progenitors across cosmic time and measuring RSD on large scales [Tojeiro et al 2012b]

Can we use this extra dimension to help us interpret simulations? [Tojeiro, Thomas, Henriques in prep]

I - Galaxy spectra and non-parametric SFHs

II - Measuring redshift space distortions on large scales
III - The formation time of halos

Redshift-Space Distortions

Coherent motion of galaxies as they trace the large scale gravitational potential leaves an anisotropic imprint in their correlation function.

This anisotropic imprint gives us the growth rate of structure, and is sensitive to the theory of gravity.

Probing gravity via the growth rate of structure

$$
f=\frac{d \log D}{d a}
$$

Shape affected by observational systematics. Small (non-linear) scales difficult to model.

Why measure RSD on large (linear) scales?

The non-linear regime is hard.

$$
\begin{array}{ll}
P_{g}(k, \mu)=\left(b+f \mu^{2}\right)^{2} P_{m}(k) \\
\text { assuming no velocity bias, } \left.\nabla \cdot \mathrm{v}=-f \delta_{m}\right] .
\end{array} \quad f=\frac{d \log D}{d a}
$$

The large-scale amplitude changes due to:
the growth of the matter perturbations in the density field the evolution of the bias, set by the velocity field

$$
P_{g}(k, \mu, z)=\left(b(z)+f(z) \mu^{2}\right)^{2} \sigma_{8}^{2}\left(z_{0}\right) \frac{D^{2}(z)}{D^{2}\left(z_{0}\right)} P_{m}\left(k, z_{0}\right)
$$

Simplify with multipoles:

$$
\begin{gathered}
\xi(\mu, r)=\xi_{0}(r) P_{0}(\mu)+\xi_{2}(r) P_{2}(\mu)+\xi_{4}(r) P_{4}(\mu) \\
\xi_{0}(r, z)=\left(b(z)^{2}+\frac{2}{3} f(z) b(z)+\frac{1}{5} f(z)^{2}\right) \sigma_{8}^{2}(z) \xi(r) \\
\xi_{2}(r, z)=-\left(\frac{4}{3} b(z) f(z)+\frac{4}{7} f(z)^{2}\right) \sigma_{8}(z)^{2}[\xi(r)-\bar{\xi}(r)]
\end{gathered}
$$

Monopole + quadrupole trivially measure the combinations:

$$
\begin{gathered}
f(z) \sigma_{8}(z) \\
b(z) \sigma_{8}(z)
\end{gathered}
$$

...but linear scales are noisy.

The evolution of galaxy bias

For a conserved sample of tracers (no mergers), the evolution of linear galaxy bias is known exactly: [Fry 1996, Tegmark \& Peebles 1998, Chan 2012, etc]

$$
b(z)=\left[b\left(z_{0}\right)-1\right] \frac{D\left(z_{0}\right)}{D(z)}+1
$$

Bnowing how much of the evolution of the largescale power is due to galaxy bias, we know how much it's due to growth.
$f(z)$
$\sigma_{8}(z)$
$b(z)$

A practical application to data

BMeasure the large-scale amplitude of a suitable sample of galaxies as a function of redshift, which we describe as:

$$
\begin{aligned}
& A_{0}(z)=\left(b^{2}(z)+\frac{2}{3} f(z) b(z)+\frac{1}{5} f^{2}(z)\right) \sigma_{8}^{2}(z) \\
& A_{2}(z)=-\left(\frac{4}{3} b(z) f(z)+\frac{4}{7} f^{2}(z)\right) \sigma_{8}^{2}(z)
\end{aligned}
$$

B Model s8 as a smooth function (spline, polynomial, etc), parametrised by n nodes, from which growth factor and growth rate can be computed.

$$
f(z)=\frac{d \log D(z)}{d \log a(z)} \quad D(z)=\frac{\sigma_{8}(z)}{\sigma_{8}(z=0)}
$$

Full parameters are: $\quad b_{0}, \sigma_{8}\left(z_{i=0, \ldots, n}\right)$

So. We need a passively evolving sample of galaxies.
How do I find the progenitors of today's galaxies at higher redshift?

How do I measure their merger rate?

Yes, we left the complicated, non-linear structure formation behind only to enter the murky, treacherous waters of galaxy evolution, stellar population synthesis and complicated selection functions.

Welcome, to an entirely different can of worms.

stellar evolution != dynamical evolution

stellar evolution + dynamical evolution ~ galaxy evolution

Using the past star-formation and chemical history of a local sample, and having exact knowledge of the survey selection function, one can predict what the luminosity and number density of objects should be at larger redshifts, in the absence of mergers.

The difference can be interpreted as a merger history (this requires some assumptions).

We need: non-parametric star-formation histories and lots and lots of galaxies.

The state of the art in LSS: The Baryon Oscillations Spectroscopic Survey (BOSS)

Evolving LRGs back in time

Identifying LRG progenitors at higher redshift

[Tojeiro et al. 2012a]

Larger rates in literature can beattributed to assuming a passive stellar enplution.

Measured amplitude of monopole + quadrupole on 4 redshift slices [fitted scales 30-80 Mpc/h].

$$
\begin{aligned}
& A_{0}(z)=\left(b^{2}(z)+\frac{2}{3} f(z) b(z)+\frac{1}{5} f^{2}(z)\right) \sigma_{8}^{2}(z) \\
& A_{2}(z)=-\left(\frac{4}{3} b(z) f(z)+\frac{4}{7} f^{2}(z)\right) \sigma_{8}^{2}(z)
\end{aligned}
$$

SOןduDS $\ddagger 0$ UO!łDD』

Constraining power:

\$1.5 better than a free-growth on same data and scales.
BComparable to state-of-the-art measurements on smaller scales.
Get $\mathrm{f}(\mathrm{z})$ directly.
Potential systematics: very different.

What next? Extended redshift range in upcoming surveys is rather tempting.

But - at lower luminosities, bluer colours and higher-z, passive evolution is an increasingly poor assumption. Can we learn from a more general bias model?

The evolving number density:

$$
\bar{n}_{g}^{(c)}=\int_{a_{i n t}}^{a} \frac{d a}{a}\left[e^{-\left(\ln a-\ln a_{0}\right)^{2} / 2 \sigma_{0}^{2}}\left(\alpha_{1} a^{-3}+\alpha_{2} a^{-6}\right)\right]
$$

$A(t)=\frac{1}{a^{3}} e^{-\left(\ln a-\ln a_{0}\right)^{2} / 2 \sigma_{0}^{2}}$
$j(\rho)=\underline{\alpha_{1}} \frac{\rho}{\rho_{0}}+\underline{\alpha_{2}}\left(\frac{\rho}{\rho_{0}}\right)^{2}$
parametrising the dark matter density field

For eBOSS, we need a further w(z) to account for selection window -> completeness via clustering redshifts will help (Dominic Bates et al., in prep)

Part II: summary \& future work

- RSD using large (> $30 \mathrm{Mpc} / \mathrm{h}$) scales is a possibility and promising complementary route, given a carefully chosen and weighed galaxy sample.
- Passive galaxies have yielded the first measurement of this sort, using the simple bias model of Fry 1996.
- Extension to higher-z, fainter or bluer galaxies will require a more accommodating bias model, now under exploration.
- Future work: fitting expansion history simultaneously; quasi-linear effects; velocity bias; HOD model; MG tests with $f(z)$.

Tojeiro et al. 2012 MNRAS 424136
Tojeiro et al. 2012 MNRAS 4242339
Bates, Tojeiro et al. in prep
Duckworth, Tojeiro et al. in prep

I - Galaxy spectra and non-parametric SFHs
II - Measuring redshift space distortions on large scales
III - The formation time of halos

Halo/galaxy assembly bias

- Theoretical models of the halo-galaxy relationship assume that galaxy populations in DM halos depend only on halo mass.
- very successful at describing the clustering of galaxies of different luminosity, colour or environment.
- However, simulations shows that the clustering of DM halos depends not only on their mass but also - often in a complex way - on their assembly history. I.e. halos of the same mass cluster differently according to how long ago they assembled their mass: assembly bias.

Simulations and observations

[Gao et al. 2005]

Simulations and observations

- Halo assembly Wechsler et al. 20 2008], usually b) assembly time
- Results are less some have four with assembly 2013], but using Berlind 2007; Tink
- Recently Zentn assembly bias relationship fror

Halo formation times

- Part of the difficulty is finding a good observational proxy for halo formation time: might resolved SFHs help?
- We investigate this using the SAM of Henriques et al. 2015, run on the Millennium simulation.

When has a halo formed?

Halo formation time is not a well defined quantity - how can we best characterize a halos assembly history with one number? Below are some of the approaches that have previously been used (Li 2008 et al.).
$f_{1 / 2}$ Earliest time at which a progenitor had at least half the final halo mass,
$f_{v M a x}$
The time at which the halos virial velocity reaches its maximum value over the entire accretion history
$f_{\text {core }}$ The time at which a progenitor reaches a fixed mass, fcore $\begin{gathered}M_{c}=10^{11.5} h^{-1} M_{\odot}\end{gathered}$

Potential observational proxies:

Instantaneous SFR
 Mass-weighted age
 $M_{\text {stellar }}$ / Mhalo

 t_{xx} - time at which $\mathrm{xx} \%$ of the stellar mass formed

lookback time yrs

lookback time yrs

lookback time yrs

Can we find a good observational proxy for halo formation time?

Part III - summary \& future work

- Assembly bias has the potential to affect many studies in galaxy evolution and cosmology. Lots of beautiful work on the theory side, but observationally very hard to study.
- We investigate proxies for halo formation time using a SAM.
- $\mathbf{M}_{\text {stellar }} / \mathbf{M}_{\text {halo }}$ seems like the best predictor of formation time, but a measurement of the shape of the SFH helps.
- Large dependency on halo mass regardless.
- From simulations, we expect other halo properties (e.g. concentration) to affect the statistical properties of the halos and galaxies within them - can we ever hope to observationally disentangle them? What observables should we be focusing on?
- Application to GAMA underway (where photometry and well matched multi-wavelength aperture photometry is now available).
- Abundant information in optical spectra that is comfortably sufficient to answer a number of interesting and unexplored questions.
- Full-spectral fitting is challenging (ask me why) but worth it.

Rita Tojeiro
STFC Ernest Rutherford Fellow
L'Oréal for Women in Science UK\&I Fellow University of St Andrews

Science \& Technology Facilities Council

- Non-párämetric SFHs opén *. up a vast parameter space space that is still largely unexplored - and are the only way to tackle some important problems.
- Simulations are wonderful validation tools.
- Non-parametric SFHs from panchromatic + spectral
"data now a real possibility.

more stuff

What next?

e Suite of "spectral observations" from Hen15 light-cone (and EAGLE to follow) to mimic a range of surveys. Fundamental tool to understand and quantify limitations of any methodology.

We need to do this beyond the optical!

Why?

- Ability to pin down young and old populations.
- Good treatment of dust (stellar masses independent of inclinations).
- Higher resolution in lookback time: science!

- Requires energy-balance or radiative transfer treatment.
- Non-linear - current approaches use parametric SFHs only.
- Takes time.
- More models to depend on!
- Ideal: Bayesian approach with an MCMC, an adaptive-grid in lookback time and a way to marginalise over issues of parametrisation. If you have ideas - see me!

GAMA panchromatic data release is here: 221 K galaxies, 21 band aperture matched, deblended photometry + spectra. If not now, when?

