Probing the Early Epoch of Massive Cluster Formation

Kyoung-Soo Lee (Purdue University)

collaborators

- Arjun Dey (NOAO)
- Sungryong Hong (U. of Texas)
- Hanae Inami (NOAO)
- Naveen Reddy (UC Riverside)
- Michael Cooper (UC Irvine)
- Rui Xue (Purdue)
- Ke Shi (Purdue)

- Buell Jannuzi (U. of Arizona)
- Michael J. I. Brown (Monash U.)
- Anthony Gonzalez (U. of Florida)
- Christina Williams (U. of Arizona)
- Mauro Giavalisco (U of Mass.)

- The most massive gravitationally bound systems in the Universe
- a cosmological tool to measure matter content Ω and normalization of the power spectrum σ_8
- unique laboratories to study environmental effects on galaxy formation
- environments one of the key parameters of galaxy formation; i) galaxygalaxy interaction (tidal stripping, merger); ii) galaxy-ICM interaction (ram pressure); iii) surplus of gas accretion

- a large concentration of massive, red galaxies in clusters = "cluster red sequence"
- red sequence is the outcome of environmental "quenching" of star formation in dense environments
- a convenient observable for systematic searches e.g., Gladders & Yee 2000

- cluster red sequence observed as early as z~2 (t_{universe}~3 Gyr)
 Kurk+ 06, Papovich+ 10
- The tightness of red sequence in distant clusters puts the formation epoch at z>~2-3 Stanford+ 98, Blakeslee+ 06, Mei+ 09
- archeological studies (absorption lines indices to measure α/Fe peak ratio) also suggest that mass assembly complete by z>~2-3 Thomas+ 05

MS1054-03 @ z=0.83

galaxy clusters at intermediate redshift

- Reversal of star-formation-density relation observed in z~1-2 clusters Tran+ 09, Brodwin + 13, Koyama+ 13
- approaching the epoch in which star formation is promoted in dense == environments?
- Identifying cluster progenitors at z>~3 is key to determining early phase of cluster formation, and when environmental quenching becomes important
- Complications: no readily observable signatures — not enough time to form redsequence, not relaxed (no X-ray emitting hot intracluster gas)

Scarcity of high-redshift proto-clusters

- \sim 20 candidates at z>2, \sim 10 at z>3
- roughly half of them around high-z radio galaxies and quasars, and the other half mostly serendipitous discoveries from "field" surveys
- the latter typically from 0.1-1.0 deg² deep fields
- 1 deg = 114 (130) Mpc at z=3 (4)
- distance for galaxies $\Delta z = +/-0.3$ corresponds to 600 (440) at z=3 (4)
- distance for galaxies $\Delta z = +/-0.03$ corresponds to 60 (44) at z=3 (4)
- A deep survey covering 1 deg² with $\Delta z = +/-0.3$ contains **1.6** massive (Comalike) clusters in other words, don't count on serendipity to find many!

Discovery of a z=3.78 proto-cluster

Lee+ 2013

- Spectroscopic followup of field galaxies yielded a discovery of a localized redshift spike at z=3.785
- All 5 galaxies with prominent Lyman alpha in emission

Lyman alpha line

- A recombination line of ionizing radiation in HII region, and thus is related to "instantaneous" star formation rates of the galaxy, when observed
- seen in either emission or absorption (sensitive to kinematics, column density, and geometry of the gas and dust in the medium)

At z=3.785, Lya line redshifts to the optical window, at 5820 A

Lee+ 2014

- Strong Lya emitters (LAEs) at z=3.78 will have distinct colors
- We had just the filter! NOAO WRC4 (5820A/42A)
- Deep imaging with three broad-band filters (B_wRI) and a narrow-band filter (WRC4)

- At z=3.785, Lya line redshifts to the
- Strong Lya emitters (LAEs) at z=3.70 will make distinct colors
- We had just the filter! NOAO WRC4 (5820A/42A)
- Deep imaging with three broad-band filters (B_wRI) and a narrow-band filter (WRC4)

• At z=3.785, Lya line redshifts to the optical window, at 5820 A

Lee+ 2014

- Strong Lya emitters (LAEs) at z=3.78 will have distinct colors
- We had just the filter! NOAO WRC4 (5820A/42A)
- Deep imaging with three broad-band filters (B_wRI) and a narrow-band filter (WRC4)

- 165 Lyman alpha emitters (LAEs) at z=3.78 identified
- At least two significant overdensities found ~40-50 Mpc apart
- Large voids of comparable size found

Dey, Lee+ 2015

- 100 LAEs observed with Keck/DEIMOS, only 2 are [OII] or [OIII] emitters at low-z
- Roughly 12 non-LAEs (UV-bright starforming galaxies) also identified within LAE overdensity regions
- Two protoclusters confirmed: 43
 members in the Core, 16 members for the
 NE group

- velocity structure indicates two large groups (green and blue) falling into each other, while other galaxies fall in along filaments
- grey circle shows the physical size of the present-day Coma cluster

- velocity structure indicates two large groups (green and blue) falling into each other, while other galaxies fall in along filaments
- grey circle shows the physical size of the present-day Coma cluster

- Overdensity $\delta_{gal} = \Sigma_{group}/\Sigma_{field}-1$
- "Core" $\delta_{gal} = 4-15$
- "NE group" $\delta_{gal} = 3-5$
- Possibly there are a few less significant structures within the field
- How do we determine the "significance" of any structure?

protoclusters in simulations: Millennium Runs

- (500 Mpc/h)³ box containing roughly 10 billion DM particles (~10⁹ M_{sun} each)
- M_{tot}>10¹⁴ M_{sun}/h structures identified "clusters" at z=0, then same regions traced back at earlier epochs
- useful tools to "interpret" the observed galaxy properties, and to assess the significance of overdensities

proto-clusters in simulations: Millennium Runs

 protocluster regions can be identified with high significance well before their virialization

• the progenitors of the most massive clusters $(>10^{15} \, M_{sun})$ will stand out already by $z\sim5$

 estimates of enclosed mass that will eventually fall in and become virialized

galaxy "bias" important, but somewhat uncertain

mass estimates for z=3.78 proto-clusters

 Based on the Millennium Runs calibration: (0.7-1.5)x10¹⁵ M_{sun} for the Core, (2-6)x10¹⁴ M_{sun} for

the NE group

 Assuming all masses within overdense regions will fall in by z=0,

$$M_{z=0} = (1 + \delta_m) \langle \rho \rangle V,$$

• $\sim 1.5 \times 10^{15}$ M_{sun} for the Core, $\sim 7 \times 10^{14}$ M_{sun} for the NE group

Lee+, 2014, Dey, Lee+ 2015

velocity dispersion of the structure

- Mass estimates based on velocity dispersion broadly consistent with other estimates
- velocity dispersion unlikely to yield robust estimates for unvirialized systems (in particular, viewing angle dependent)

Y.-K. Chiang+, in prep, Dey, Lee+ 2015

Science Highlights I: enhanced star formation in protoclusters

Brightest Mid-range Faintest

- Voronoi tessellation to determine local density e.g., Cooper+ 05, Darvish+ 15
- Voronoi polygon: A_V ~1/p
- Luminous Lya emitters preferentially reside in galaxy overdensities
 - promising observational signatures of protocluster region?

Science Highlights I: enhanced star formation in protoclusters

- Galaxies are roughly 40% brighter in Lya at the "protocluster region" than those in the "field"
- continuum (R) magnitudes remain unchanged, i.e., galaxy continuum luminosities are brighter in the densest region
- star formation is enhanced in dense environments as early as z~4
- potentially a good thing for protocluster search, but not so much for doing cosmology using line emitters (e.g., HETDEX)
- More data needed for better statistics!

Science Highlights I: enhanced star formation in protoclusters

- Galaxies are roughly 40% brighter in Lya at the "protocluster region" than those in the "field"
- continuum (R) magnitudes remain unchanged, i.e., galaxy continuum luminosities are brighter in the densest region
- star formation is enhanced in dense environments as early as z~4
- potentially a good thing for protocluster search, but not so much for doing cosmology using line emitters (e.g., HETDEX)
- More data needed for better statistics!

Science Highlights II: neutral hydrogen content in cluster CGM

- Lya photons undergo resonant scattering through neutral HI gas in the interstellar and circumgalactic medium
- Thus, a measure of Lya emission constrains the content, geometry, and kinematics of the gas in the ISM and CGM Verhamme+ 12, Zheng+ 11, Dijkstra+ 12, Momose+ 14, Matsuda+ 12, Steidel+11, Rauch+ 08
- NB image stacks are created, and their Lya radial profiles measured
- extended Lya halos robustly detected, clearly distinct from continuum emission of the same galaxies
- we find the scale lengths of halos in the range of 7-10 kpc; very large halos (20-30 kpc) as reported previously by Steidel+11, are ruled out.

Science Highlights II: neutral hydrogen content in cluster CGM

- Lya photons undergo resonant scattering through neutral HI gas in the interstellar and circumgalactic medium
- Thus, a measure of Lya emission constrains the content, geometry, and kinematics of the gas in the ISM and

Xue, Lee+ 2015, to be submitted

Key questions

- Do protocluster galaxies have older ages, larger stellar masses than the field?; do they have different star formation histories?
- Can Lya overdensities be used to pinpoint the sites of massive forming clusters?; If so, how does it affect cosmological surveys like HETDEX?
- Do LAEs trace the same large scale structure as non-LAEs (LBGs, sub-mm gals)?; use of all-sky surveys like LSST for cluster search?
- Need to obtain a statistically significant sample of high-redshift protoclusters

systematic search of high-z protoclusters

- spectroscopy of overdense regions in the 4 deg² CFHTLS Deep Fields (starting in Dec 2015)
- further identification of Lya emitting galaxies (via custom narrow-band filters: in progress)
- systematic study of the properties of "member" galaxies vs. field galaxies
- Lya-emitting fraction at clustercentric distance, star-formation rates, stellar masses
- search for "red and dead" galaxies and dusty extreme starbursts

a promising candidate at z=3.55

- Similar to z=3.78, identified with a high concentration of Lyα emitting galaxies
- ~20 galaxies at z=3.55; another good system to study to characterize the properties of protocluster members

summary

- At least two proto-clusters at z=3.78. The presence of two large structures in proximity is fairly rare, may be a supercluster in the making
- If all enclosed masses fall in by z=0, they will evolve into a Coma, and Virgo-like cluster
- enhanced star formation in the dense environments: potentially a useful observable to find more protoclusters
- More UV-luminous and/or high-density galaxies appear to have more extended Lya halos around them
- we have begun systematic search of high-z protoclusters; will calibrate search techniques for future surveys (LSST, HETDEX)